akghxhs55 commited on
Commit
13b62fe
·
1 Parent(s): 2a8d30b

initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1427.28 +/- 726.92
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6a6bb672e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6a6bb67370>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6a6bb67400>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6a6bb67490>", "_build": "<function ActorCriticPolicy._build at 0x7f6a6bb67520>", "forward": "<function ActorCriticPolicy.forward at 0x7f6a6bb675b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6a6bb67640>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6a6bb676d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6a6bb67760>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6a6bb677f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6a6bb67880>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6a6bb5f6c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVSQwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgtjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAa8zwRaH0UwL390vDDrAfeSflT1MlkAzNDNFL0+4QvoSNiDHrN3xJM87zViVYB3JqEXIsl1OXpRiYY5NVrLVU/Q3JIchmXpeMJaUzVer7D0AyxDBeizpzRBTxZ/jqNvvyDuGG9bWhdbNr847o0AGYPmulvHCUKU94Q6R1C3/jFmgwprwkLU7aj795QISntrm3xIucyhmy72TEjoKfDkHYPvMEnF1PWdSFkRbpNTZQ/n0Z+oLHwDgm3KHIQoGCqekAfkyULMwSt5jsu0issm5fl3SAWLkg0/wexK7hubFqC+PKbX5Kua5BqyrOZ2QLZvk4iAvt2OSFK7DB7iSQzNURCFE3ML7WSVX5viBif/nCAIWtjxj/RU7+BCC9fXgStwILTS9zHG5YVJkgZCL46HoOuRUPZ2ZDFcg/npGZddtLi5JyH3Tqn3JkOCUcqgxC3i15kEqrVVoVkj2WOhbWMNkg5iWa/hsm5UOvJ2gsLBOZzckTV3NRN0j+6QwimFr8wiA16c15HBy4otpZ1/Rgb6qMN1PqZ25GqrbyDplyaXxJOZaqQGzEvw8mW/+5kPrn8p715AxBEuSK7SjcR4QeCN+zUfjD7jFyKiX6OSgQu4hMk/kPMlQDp7ofF2VK9HgiGychHdleifKWD5JU6orw8D8W6kfCRDkPc65WtMQd0/pHiWz50ENfUYC/a51TWjHY9wgu9SyOFqp92HcDE/H6AfdFiMdFze39ZgMOAbVbFkC8dT0TmwWcC1SpeTkvJopJO/8mrSQmheIkssXDHEiHsHal1ZPubRn2V3Kk7IhQG9HkvtI7QIcjR4jZsZwcAgCiq6WzgTgF9FqqTw0DiEVhKlWEg+NeDcxpnKaxeGDlabUoGpUljqasbzQ6vnJzeibko8GWxJgPtBNRrt1MHucBTwWuFl1TdTl6FnDXIHvrxlCmI9Lt7E6LeVn3szt4mvyGZMdmBWPssziGZumdimfiAkE8iUCJXZP7SNy7xbiB/VTBBdvRFtQ/wo5c4CwiAUUVmc67uG0F4LpdTJt6DwE7xLM9jxOnrHTpYt7KVLTpKf/Pm/AYy3BmXOTVzN2+XYT2DbQ9Vll8x7c2UZLEHOJhrMEW+uBMh3+YvPk8dMnFie56m097cZg805KHDNivVgaXvgWxGo9SFvxh/9Mvf5k5F0NC318SiaE6J+plnjORLF8Cz7eLGNzRh2z6MzeSP95qYL1mtGwIB9iWhWwnBkdCSy/nX07Lgu2UpwcXaoWC1ijRLB37nSMiHOriQQFspyq0RwP++bu5X0s9Ni9A/bAJcAj51foSBSj3XNeHj419dVywQiV6X1Jes6L+/IzAv7MsZDYvKWkXsLkoOM2PXxBwPpvwkyqgjPNVIcvRfK6IBfyYGB2CF6VZ3P17HfzXQRHsJPDis5HzIzfON2tCcJt1bbEMOoLTU+q1/DdmS//+Yz2GkHoz/BFamOJ+3GGNrrSIDjQasT9gsF94CPV3apdskYVZ9d0jBSbPQkG6eGyP4bYIIr4/5Mc2BfPH+3AhIoaEA472BgddNRzTK+dNYL+cN6DeHVu7aEGF1WKbwGr88uKd7Wv4hK+3yQAT/RCW1ul/yWvmkcKHJ1ba80N+Aofs21eQsKnIf2mn7kKHuDeSdEASJk3l10w5F1C1zxegs/++kWzrVhnUH7e3U5zLHrMRuf831dvrx/gIhr9XgAMRhdRYCo45HjdjPVSmlijQvFXkXpTLLsddfKI9916x1rU/zufemHDtWlmvTEHQ4DQsz4tR8kH0KsvyafrLWLnMCMhbN/17ZB8eemFOYYZKg568KJfDujo9tewr498EPOdB6BRtv5vbrdVtF8LWPPlJZVr/ITc+E4t2DAHuxLTfJoE00t/mQ4u3C/R78LTCgaqwEX5adTUp89ywhhEfeElCAeM2Zv8TgigR/po0WinmPDQWmMpz6SfYAO51qK/FjokVGfIfz8v/PjrXjLxL9S5kuBsYdooKtSOThgVRFa5mUldzYm058/WfI/1DFnQ/WvJkYa4ZS1wcAO8NutnGj/K7w70asTejv0HcI4a1qggYsz8qHcWGZ/PbcRE7Si1PXKuTBG6VXJTzk3srbV/HQ5aYTotmVFU2dtx60NZE3mpZoViIXc2gi/Qr+Q3xUdMWywPKoUMDQvFmsTmrk8hbHVnT5lHNcV4/NTWSSCBBPuk11ELO51/v6z/qL0EayyP8nZeaSMMtTV6sUtNrLNfMM+DFUO97cUB0qK+uOpWyIE5md9Nd6kLcs0YXAHsulX1LQt6X7txzsu61JC14SrJJZCmd4yC4i8RhxlJOD4ct1HUs/XvKrXKBCNB1yTCuT2TkKHbbtBRAIgIoZFZvsAc5vIkEqugP19Fchc3B7YziS4aIQaSvGnaAF8aQxiWcuPuKd42hrtDYQ91WxZ1tnf0mWlyTcx072m+uK07zu9nLIL5438QTVxPrDdh9cVqt6OiwZgjt6JIPHHX/D8g3QaTVJ7MHEe5aoJm/DjLUOOcbU6ihwsk4sV02olYthChol9aIYFVxiDWbYKwXa0LqiYIifF6meG3IKECRyOhG5AuCC8K9GiLlE2SZQac4TgHrZjKyTEh/vIqODVNRXRPkBijpqmU0wi4jCXmUs5VAFmbZaB8V9hRwsj5fw37F2JFjUwtIuGY6dJJdoowfQzPKS6GnHjw7I+p7TRP1lE7verv2EFI8CLzln2vhqPR5TF88tLrwdc0YDW57SyrzMsFEQalxKb1TI5MxwszUp2RjndSw9by6MMX/uyM/1X7SfCZip39IgABtNFSrgQyesYA7w2EwUuMHyGR2ILiyo3ALP10e/zEOo5XLFf5PdpLis+dAhDKocTi8mr3/F+yyZpyWhgbelXD8ZohrjGZb9UQSwGlHxjh7wrMDILhp574YVPMwGqQJqhn4iqcgoeBWisGLr37WqIDTsy4jo21hN2J8bVtlLbbGyGuALStAbB+nAOx5rxCL+5LqsmuefFRZXsFyjH6rBkhUfvCnsTcHgBOApgT5xU2vK7JXvObc/mgrjRjt0LlzMJ4EnX0fFSHUAR6AQAMJEDSpvzHaRqSVX54vJgPBpqFYNW2JQNa6gxigWYhY8D6jzZtt1IqC667+eyiwvfL2l7WxmJmbftl8kZT6wX5pMrJNPT5dWbCwGcvYVvl436N1PzS1I2NySYZb0VomZ+IpWqqi/oQE8ugnhUrZLnv3K55M/ua2xlCnA34sQJHtr0qOFSfq2/coDwT3NVggO6qU47E6Nxt9KuP1dAvalz42V6ErADxOv4VYeMYle92MqOLG0y6aPlaiS0C1vqxuCo3/isN+2xycCoorlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUS2B1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": "RandomState(MT19937)"}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVUQsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgQjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWwAkAAAAAAABsexnG9byTFNTxOzrsmIaNdvJBGK0HAWHF/uOR4jb9Js8Q01gUepbzS1h9Be2TafT7UqKoVIxuBxIRTVEu0k/0xDqT9q39bIZ/GQmur+A0PhdS/UDy+KFbA38TxBVr2yq8upwiRb+wqEeawhWQjllDuNnoysQTR73vC/PyAESh+kPkQj4Zfy/3oAWU+lRvkssejNYF727wGRwS9t8dHMO9zyLiD0ahCkjtZ+MjzuBKLAVd2IVZgYkdc3J/GZxTqnoSzWd4wMuFztneDgbgvLBJc+zWhp/hVfwcgVlg1PEQtK20Wx5UuRU+slGpcwx40h8CG8IgLpA3SmBHpq8VFjaALRQmUmhI4dY6uF4AXQYhxuQTCkB9BQnEPhrszp2MbKBaOCPQvLVDb5N+i2aM9x/ZDimRL+02TlNz5QZ4CM7hmnSrH4wYrX4w8PHx3LZOWoUzmI6UIhqtFI99MQdxJX2ref3QcuJMVHFArZoAOvCiIIJyX/4TkO5nTE6v20GsL4ckV2dtlofBz1vyLDnvGxZJkIofuKFmdNamh8Sw/W6Gsp4pDyISe1yNxh5oU2417E7iOtUf/68zRZXg9aMmoJ7reZ6BsKkEXUWsW/+LWDN7VUA1ej03BXBzEXJOW1zsXNowaYE5BsmjKJSbPoMv7VpHhzs0cKuf3daq4rIt4cONcz1gWW2txFa5wlR1UWbFcx+Rcga59aw8PO+d295o9aSukdjpSRvuWs2O4GQRpHtN+hfkfrW4rEgZP9/ePKke2mFo+NzzKs25bvwEUAROMwKmMP/cha6+fTMqE7D7QEM8YHpi7xxTajpVJLnu3jwJVMEWWSrsUt5r3hiXdLRxJYywhKuwA8plWEr3/ral80Gb9pS76gXpXK5VAL91uHJwfuH1eYrlGbcoQZJbYU8vVEuR/MAP9U9VfEvBL/oXqykQ4SDgi1PE5ZyX2Q56ZHToXafb5NPzKZaLU8mnT+YGipmmlZA1n1xpOZRiwWyivfs26cOugst/gyl1CIIpo6pGFgB76fMwdid/XeN3NaAmb8CvWDQeysMOI9Z4rUSP84yGEjUb6X3frIJgJhg3n7SRDyjvSRvk1Ao2eRvR/vIJOG7Cy8BcDqVD4OgvhrrrT4SHqMye/TnX72RMoafHgeFFC6dK46mq+PY2LE46pVFKw+bQkPgUaXrwhaoY0q7C6Hacmtk7g9FJhpF35iNMwN3JbiNRL4YvDmqEIjL5FjQMj2s/kkQmnuFcPuQVo91RK6r2SWSSQOogmBPQg0HMVKzm/4lbId8MorE86zgP5kmdhCO1iWpUC/Oz5u/413scmvGXngrcwDSMfo6YxLpsi2SPjDirSBCI/mFxpGY5HCedilpBzMH0Z+2cslcVBwgHpGBNM3iJ60A/Vqwfq9+fxHcAjGzZPvp+6d+ct68yeSpUdP/mPBCtIIlgVkXZyerr0k1NJXiQ1v5Iv01nYeCrJ5p/Z1mE6B8/oEV/0oAQPhGlUdAkYKPP+nuA1H+yyVBVsd5o2Ai9GLsu3ci1ZlR14r53IXrsNfC5qOyVxAbsvpFqRkgUbLzIDNnl1r9FAa5Jn2mdXtyfcXpEXuRCrPUe4BdAp3YqokpHcVArWPgL8wh7wemVvLVOyiNTziW2R5MBVAOink/cFKz/otGI9KpdXzmTUIgztCeX7QaapFdoucib2vk5IB9nGaWrLK9flMeNbuaCZCGwNu4qiU2Eht1GW9h7DlCkUUQ32rhUFJ7iP5KAnVAmj6Wqznf8riHsDcPnxzDBqZMUE/HoimygAe3+pvrSY1emhzyknjuXy7U1Pz+FnaOtDLytt4SkecvE/4w0zi0cuhca/xtZD7b7TqG/IfHJ0w2cMEm7xSfjwqXqAi1kyip4vNiIo7Ugx+k1EztrxdN225rnlnx5j1gm1FUj7LCL5ttbwYq+RdxOY0rCoXdrQQTasjunw8LpiwWoBzvNMtl7o6NVaeWaTsIjy025tDpYCjrbPRa/PezsGQN/WX59iNdKbRcyklENZ0L1EOJIyDdB1dUlV7WCcZXaCffabrx50GS+vldv9G4nlXFHnyeCSwcl7NRmJmyrIS0jiQwKVHNs1DE4puwIKIqLG5Zx3lP8rm9PgjaUaAiciLbQn3HJfKMItigfBvYvJZ9VIG9KcKdjSwnwIoBwwA8fX+cIcexZhA0x8+G97dpGO2EDTdqa3rD6pGFSrcpSSkjDUYdtlBF0fkyTUry3bvJnSSJGcmX5HXvEcq2EbFXeUnxzLt+BJRKRNBylALMKwvamlCi+xECJ5iyKE7R5YbpKD3ETlh7PDlNbwUq0ta1iqLnhxtD/cB4SUJX8DirvYeElPaocjbHFcwI6TpYP6w2mq8ws4srvWTApgbUxHzfSt/XubVGmc87eOzdflF8VaSfkKm2+sgfBChzjGGHgpkZo2qdfr2kZ7E+CuX0IZLf8CeEjosfG2MHEOvSsTKMreDEY2mPl3RchO1U5dN77qogQp0TvDLzHTC8xkRCDO1z8uaboPs4i5NeWtwTsml/aL5XibtOkGOiqySkYO1QhTm5UJcyFySn1ACSaQZ3vSxIl765w21y+yZI8yXQ5L2W6zv/9PnhuuoZCW+zkmG1r78AgSLFVfT75q4/NRBMOAPVTCWDsyygb7ttLVy/MC3hv3qkkg6EE1F0TUwm9ML8igxKFuQke5D1O17o7y526Lg/WWiNPv8IaH6cj4t9pcqpjl0tC3y/ZiWo6m5+R15cqEPmvjwXojo8hvCKHNGypp9hWDKhxP5RfMLmIDfNdBeGn/VCDeMw78SEsdTBBxTL+vl4fdyQKsCiFDKi36E7eyBsx+ta68xwEX9vArHUhjOvVkaMoYakCCzs+oNnnd6boY18DbHrBoQLZhJlQE/oEFf5SyrdKCDZCktf5RNyfZGRgBhJVGgzy1m3tHV7CsBkrJxFkHcKqqVFeL7N+QyYBIM2jYFmpGyX2H8cTaMOC4QPv59RMZr8xMDX1tiKTIWWKvnkaPWkAbEx+KmWBCjfYmgpNOg73HAhLtIyxIbwUOU/7Lme8YCsFARgMmiN3sBkoNbbxSNmXNQslX4uVBBSpaBbvlP/YOjHoa5PfkKJyq1Qmhm81ONhIz/A+sSMIalQb6PvoNW0j6sEkIyfu2BrPPgmHVwFqPPEvRRQt9CtmJBIQ/zBEFjm8EXVgNYnRL4Qb4m+TnVBj0JgVnEWvMDjp35a/67Ou1/WO4ePU3U7xXi0aXknK6Hi2adFKvKk+sttrY1KcWXgOM73UglGiK2Tg4UYHCKef/7DLoc90vxU7F5Fon3l1YEJB+5dyYSWo3qR9UVxyheYB1Pk/OreUaAmMAnU0lImIh5RSlChLA2gNTk5OSv////9K/////0sAdJRiTXAChZSMAUOUdJRSlIwDcG9zlEsYdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 10240, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671649005307572832, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVKQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMey9ob21lL2FrZ2h4aHM1NS9zdHVkeS9odWdnaW5nLWZhY2UvZGVlcC1ybC1jb3Vyc2UvdW5pdDEvLmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMey9ob21lL2FrZ2h4aHM1NS9zdHVkeS9odWdnaW5nLWZhY2UvZGVlcC1ybC1jb3Vyc2UvdW5pdDEvLmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAACYCez7Qf3c/OtElP+VTBb93wPy+S9qAvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVnQ0AAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhjlBm5y0ZcCUhpRSlIwBbJRLf4wBdJRHQNMVFQdXDFZ1fZQoaAZoCWgPQwj6tmCpLlRPwJSGlFKUaBVLTmgWR0DTFRj5tWMkdX2UKGgGaAloD0MImnyzzY0cVsCUhpRSlGgVS1loFkdA0xUcbMX7+HV9lChoBmgJaA9DCPERMSWShFDAlIaUUpRoFUt/aBZHQNMVIbMgU111fZQoaAZoCWgPQwjs20lE+KxcwJSGlFKUaBVLXGgWR0DTFSSt4iX6dX2UKGgGaAloD0MI3o5wWvAPXMCUhpRSlGgVS4doFkdA0xUqjx0+1XV9lChoBmgJaA9DCHb9gt2wN0DAlIaUUpRoFUtmaBZHQNMVMKfe1rt1fZQoaAZoCWgPQwjicrwC0XZWwJSGlFKUaBVLWWgWR0DTFTVClabGdX2UKGgGaAloD0MI1nCRe7pUVMCUhpRSlGgVS0RoFkdA0xU4NWU8m3V9lChoBmgJaA9DCIXRrGwfzGDAlIaUUpRoFUuJaBZHQNMVPsoQWep1fZQoaAZoCWgPQwiaRL3g03lSwJSGlFKUaBVLb2gWR0DTFUTysjmkdX2UKGgGaAloD0MI499nXDjAU8CUhpRSlGgVS0doFkdA0xVH3z+WGHV9lChoBmgJaA9DCKxT5XtGZFHAlIaUUpRoFUtRaBZHQNMVS79deIF1fZQoaAZoCWgPQwi/mC1ZFShRwJSGlFKUaBVLW2gWR0DTFVD6XSjQdX2UKGgGaAloD0MIri6nBMQAScCUhpRSlGgVS05oFkdA0xVUYYixFHV9lChoBmgJaA9DCAWnPpC8e17AlIaUUpRoFUuSaBZHQNMVW7FwT/R1fZQoaAZoCWgPQwjPEfkupYZSwJSGlFKUaBVLWmgWR0DTFWKM6zVudX2UKGgGaAloD0MIzehHwynfUMCUhpRSlGgVS09oFkdA0xVmuBtk4HV9lChoBmgJaA9DCObo8XubqVvAlIaUUpRoFUt8aBZHQNMVbFiKBNF1fZQoaAZoCWgPQwiOB1vsdoNjwJSGlFKUaBVLfWgWR0DTFXCFxn3+dX2UKGgGaAloD0MIEd+JWS+2PMCUhpRSlGgVS31oFkdA0xWRYIBzWHV9lChoBmgJaA9DCHh7EALyS1fAlIaUUpRoFUtxaBZHQNMVmzSLIgh1fZQoaAZoCWgPQwiGrG71HEFkwJSGlFKUaBVLY2gWR0DTFZ/SJCSidX2UKGgGaAloD0MINzl80gn9Y8CUhpRSlGgVS3VoFkdA0xWmSPEKmnV9lChoBmgJaA9DCGE3bFuUoU3AlIaUUpRoFUtXaBZHQNMVq37Lt/p1fZQoaAZoCWgPQwjOwTOhSUo2wJSGlFKUaBVLbWgWR0DTFbAB1cMWdX2UKGgGaAloD0MInS6Lic3pScCUhpRSlGgVS4RoFkdA0xW7rPdEcHV9lChoBmgJaA9DCO/hkuNOWRxAlIaUUpRoFUuSaBZHQNMVw+QIUrV1fZQoaAZoCWgPQwgdPX5vUxRpwJSGlFKUaBVLfWgWR0DTFcixKQJYdX2UKGgGaAloD0MIVp+rrdh/OkCUhpRSlGgVS2doFkdA0xXNTt9hJHV9lChoBmgJaA9DCElpNo9DEWnAlIaUUpRoFUuAaBZHQNMV09hmXgN1fZQoaAZoCWgPQwhkeOxnsWpTwJSGlFKUaBVLiGgWR0DTFeJ1klNUdX2UKGgGaAloD0MIgnAFFOrJZMCUhpRSlGgVS3loFkdA0xXr8wHqvHV9lChoBmgJaA9DCIoAp3fxuVfAlIaUUpRoFUuDaBZHQNMV8iiVSoB1fZQoaAZoCWgPQwgkCcIVUHJIwJSGlFKUaBVLUWgWR0DTFfa97F85dX2UKGgGaAloD0MIoWZIFcWvSMCUhpRSlGgVS4ZoFkdA0xX8IToMa3V9lChoBmgJaA9DCKvoD808oUHAlIaUUpRoFUtDaBZHQNMV/qtozvZ1fZQoaAZoCWgPQwjF46JaRFBHwJSGlFKUaBVLYGgWR0DTFgMTL4etdX2UKGgGaAloD0MIwktw6gODUMCUhpRSlGgVS3VoFkdA0xYh8Md92HV9lChoBmgJaA9DCKm9iLZjgENAlIaUUpRoFUtRaBZHQNMWKj4593N1fZQoaAZoCWgPQwhaKm9HOF05wJSGlFKUaBVL02gWR0DTFjcMfA9FdX2UKGgGaAloD0MIdY4B2ev1SMCUhpRSlGgVS3ZoFkdA0xZFO0b963V9lChoBmgJaA9DCPPixFc7TEzAlIaUUpRoFUtaaBZHQNMWTVImPYF1fZQoaAZoCWgPQwiVZYhjXT5KwJSGlFKUaBVLcGgWR0DTFlLaTOgQdX2UKGgGaAloD0MIEY3uIPZGZMCUhpRSlGgVS8doFkdA0xZcItDlYHV9lChoBmgJaA9DCHKMZI9Q4xlAlIaUUpRoFUufaBZHQNMWZaDkELZ1fZQoaAZoCWgPQwhjmBO0yQEEQJSGlFKUaBVLvWgWR0DTFnBqynk1dX2UKGgGaAloD0MIjgJEwYyPRsCUhpRSlGgVS3FoFkdA0xZ3gm7aqXV9lChoBmgJaA9DCH0fDhKiIDfAlIaUUpRoFUugaBZHQNMWhrILgGd1fZQoaAZoCWgPQwg3UOCdfAdRwJSGlFKUaBVLgWgWR0DTFpS9/SYxdX2UKGgGaAloD0MI3XwjumcfZsCUhpRSlGgVS2xoFkdA0xabTHKfWnV9lChoBmgJaA9DCPZcpiZBim7AlIaUUpRoFUuZaBZHQNMWpR1klNV1fZQoaAZoCWgPQwgwZHWr545owJSGlFKUaBVLYmgWR0DTFql+mWMTdX2UKGgGaAloD0MIqmIq/QSDYsCUhpRSlGgVS3RoFkdA0xbK1lGwzXV9lChoBmgJaA9DCPYjRWRY3SXAlIaUUpRoFUtsaBZHQNMWz3TAnD11fZQoaAZoCWgPQwhCP1OvW8g/wJSGlFKUaBVLXmgWR0DTFtTru6VddX2UKGgGaAloD0MIcqYJ20+uVsCUhpRSlGgVS3ZoFkdA0xbcRoAXEnV9lChoBmgJaA9DCOWaApmdCljAlIaUUpRoFUt9aBZHQNMW4QqNIbx1fZQoaAZoCWgPQwhODMnJxMdYwJSGlFKUaBVLYGgWR0DTFuR/7SApdX2UKGgGaAloD0MIob/QI0Y9XMCUhpRSlGgVS3ZoFkdA0xbsMQ2/BXV9lChoBmgJaA9DCBzRPevaYnPAlIaUUpRoFUvQaBZHQNMW+jOoo/l1fZQoaAZoCWgPQwijQJ/IkzRjwJSGlFKUaBVLdWgWR0DTFwL7xd6cdX2UKGgGaAloD0MIHR1XIzvXYcCUhpRSlGgVS3xoFkdA0xcIUd7v5XV9lChoBmgJaA9DCOaQ1ELJ5JS/lIaUUpRoFUtkaBZHQNMXDIJAt4B1fZQoaAZoCWgPQwij5qvk49dlwJSGlFKUaBVLt2gWR0DTFxfJyQxOdX2UKGgGaAloD0MI1ESfj7KgZcCUhpRSlGgVS5poFkdA0xcgSNOuaHV9lChoBmgJaA9DCHRBfcucakHAlIaUUpRoFUttaBZHQNMXI90Rvm51fZQoaAZoCWgPQwhKfy+FB7VRwJSGlFKUaBVLfWgWR0DTFyjCXQdCdX2UKGgGaAloD0MIP4ulSL5mXMCUhpRSlGgVS5VoFkdA0xcxupjtonV9lChoBmgJaA9DCOfCSC9qvlPAlIaUUpRoFUtpaBZHQNMXT7rgOz91fZQoaAZoCWgPQwg+Qs2QKstWwJSGlFKUaBVLZGgWR0DTF1RoQFs6dX2UKGgGaAloD0MIN3AH6pRAV8CUhpRSlGgVS4loFkdA0xdcKL8763V9lChoBmgJaA9DCLKhm/0BfGnAlIaUUpRoFUvQaBZHQNMXbR4QjD91fZQoaAZoCWgPQwjjGwqfratYwJSGlFKUaBVLu2gWR0DTF31vBJqZdX2UKGgGaAloD0MIgNWRIx3mYcCUhpRSlGgVS4toFkdA0xeFReC04XV9lChoBmgJaA9DCPjddMsOqGPAlIaUUpRoFUuBaBZHQNMXi8mrsB11fZQoaAZoCWgPQwi296kqNK1dwJSGlFKUaBVLimgWR0DTF5KtGNJfdX2UKGgGaAloD0MIIuNRKuGZSsCUhpRSlGgVS2doFkdA0xeXL/jsEHV9lChoBmgJaA9DCAu2EU92hFLAlIaUUpRoFUt6aBZHQNMXnPgeii91fZQoaAZoCWgPQwg429yYnoZRwJSGlFKUaBVLYmgWR0DTF6DhQ3xXdX2UKGgGaAloD0MIlYJuL2lBUsCUhpRSlGgVS1toFkdA0xelpPAO8XV9lChoBmgJaA9DCP1s5Lop1FTAlIaUUpRoFUtnaBZHQNMXq60pmVZ1fZQoaAZoCWgPQwi4W5IDdmtowJSGlFKUaBVLkmgWR0DTF7MfW+XadX2UKGgGaAloD0MI2uOFdHicTsCUhpRSlGgVS4toFkdA0xe5sO5J9XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 60, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVKQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMey9ob21lL2FrZ2h4aHM1NS9zdHVkeS9odWdnaW5nLWZhY2UvZGVlcC1ybC1jb3Vyc2UvdW5pdDEvLmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMey9ob21lL2FrZ2h4aHM1NS9zdHVkeS9odWdnaW5nLWZhY2UvZGVlcC1ybC1jb3Vyc2UvdW5pdDEvLmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "name": "ppo-lunarlander-v2", "system_info": {"OS": "Linux-5.15.79.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 #1 SMP Wed Nov 23 01:01:46 UTC 2022", "Python": "3.10.6", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "False", "Numpy": "1.24.0", "Gym": "0.21.0"}}
ppo-lunarlander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:611b1731fc8597e9a4fa59cf52925025a405213fed0d6627885f284af21096f4
3
+ size 152759
ppo-lunarlander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-lunarlander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6a6bb672e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6a6bb67370>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6a6bb67400>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6a6bb67490>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6a6bb67520>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6a6bb675b0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6a6bb67640>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6a6bb676d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6a6bb67760>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6a6bb677f0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6a6bb67880>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc._abc_data object at 0x7f6a6bb5f6c0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVSQwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgtjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAa8zwRaH0UwL390vDDrAfeSflT1MlkAzNDNFL0+4QvoSNiDHrN3xJM87zViVYB3JqEXIsl1OXpRiYY5NVrLVU/Q3JIchmXpeMJaUzVer7D0AyxDBeizpzRBTxZ/jqNvvyDuGG9bWhdbNr847o0AGYPmulvHCUKU94Q6R1C3/jFmgwprwkLU7aj795QISntrm3xIucyhmy72TEjoKfDkHYPvMEnF1PWdSFkRbpNTZQ/n0Z+oLHwDgm3KHIQoGCqekAfkyULMwSt5jsu0issm5fl3SAWLkg0/wexK7hubFqC+PKbX5Kua5BqyrOZ2QLZvk4iAvt2OSFK7DB7iSQzNURCFE3ML7WSVX5viBif/nCAIWtjxj/RU7+BCC9fXgStwILTS9zHG5YVJkgZCL46HoOuRUPZ2ZDFcg/npGZddtLi5JyH3Tqn3JkOCUcqgxC3i15kEqrVVoVkj2WOhbWMNkg5iWa/hsm5UOvJ2gsLBOZzckTV3NRN0j+6QwimFr8wiA16c15HBy4otpZ1/Rgb6qMN1PqZ25GqrbyDplyaXxJOZaqQGzEvw8mW/+5kPrn8p715AxBEuSK7SjcR4QeCN+zUfjD7jFyKiX6OSgQu4hMk/kPMlQDp7ofF2VK9HgiGychHdleifKWD5JU6orw8D8W6kfCRDkPc65WtMQd0/pHiWz50ENfUYC/a51TWjHY9wgu9SyOFqp92HcDE/H6AfdFiMdFze39ZgMOAbVbFkC8dT0TmwWcC1SpeTkvJopJO/8mrSQmheIkssXDHEiHsHal1ZPubRn2V3Kk7IhQG9HkvtI7QIcjR4jZsZwcAgCiq6WzgTgF9FqqTw0DiEVhKlWEg+NeDcxpnKaxeGDlabUoGpUljqasbzQ6vnJzeibko8GWxJgPtBNRrt1MHucBTwWuFl1TdTl6FnDXIHvrxlCmI9Lt7E6LeVn3szt4mvyGZMdmBWPssziGZumdimfiAkE8iUCJXZP7SNy7xbiB/VTBBdvRFtQ/wo5c4CwiAUUVmc67uG0F4LpdTJt6DwE7xLM9jxOnrHTpYt7KVLTpKf/Pm/AYy3BmXOTVzN2+XYT2DbQ9Vll8x7c2UZLEHOJhrMEW+uBMh3+YvPk8dMnFie56m097cZg805KHDNivVgaXvgWxGo9SFvxh/9Mvf5k5F0NC318SiaE6J+plnjORLF8Cz7eLGNzRh2z6MzeSP95qYL1mtGwIB9iWhWwnBkdCSy/nX07Lgu2UpwcXaoWC1ijRLB37nSMiHOriQQFspyq0RwP++bu5X0s9Ni9A/bAJcAj51foSBSj3XNeHj419dVywQiV6X1Jes6L+/IzAv7MsZDYvKWkXsLkoOM2PXxBwPpvwkyqgjPNVIcvRfK6IBfyYGB2CF6VZ3P17HfzXQRHsJPDis5HzIzfON2tCcJt1bbEMOoLTU+q1/DdmS//+Yz2GkHoz/BFamOJ+3GGNrrSIDjQasT9gsF94CPV3apdskYVZ9d0jBSbPQkG6eGyP4bYIIr4/5Mc2BfPH+3AhIoaEA472BgddNRzTK+dNYL+cN6DeHVu7aEGF1WKbwGr88uKd7Wv4hK+3yQAT/RCW1ul/yWvmkcKHJ1ba80N+Aofs21eQsKnIf2mn7kKHuDeSdEASJk3l10w5F1C1zxegs/++kWzrVhnUH7e3U5zLHrMRuf831dvrx/gIhr9XgAMRhdRYCo45HjdjPVSmlijQvFXkXpTLLsddfKI9916x1rU/zufemHDtWlmvTEHQ4DQsz4tR8kH0KsvyafrLWLnMCMhbN/17ZB8eemFOYYZKg568KJfDujo9tewr498EPOdB6BRtv5vbrdVtF8LWPPlJZVr/ITc+E4t2DAHuxLTfJoE00t/mQ4u3C/R78LTCgaqwEX5adTUp89ywhhEfeElCAeM2Zv8TgigR/po0WinmPDQWmMpz6SfYAO51qK/FjokVGfIfz8v/PjrXjLxL9S5kuBsYdooKtSOThgVRFa5mUldzYm058/WfI/1DFnQ/WvJkYa4ZS1wcAO8NutnGj/K7w70asTejv0HcI4a1qggYsz8qHcWGZ/PbcRE7Si1PXKuTBG6VXJTzk3srbV/HQ5aYTotmVFU2dtx60NZE3mpZoViIXc2gi/Qr+Q3xUdMWywPKoUMDQvFmsTmrk8hbHVnT5lHNcV4/NTWSSCBBPuk11ELO51/v6z/qL0EayyP8nZeaSMMtTV6sUtNrLNfMM+DFUO97cUB0qK+uOpWyIE5md9Nd6kLcs0YXAHsulX1LQt6X7txzsu61JC14SrJJZCmd4yC4i8RhxlJOD4ct1HUs/XvKrXKBCNB1yTCuT2TkKHbbtBRAIgIoZFZvsAc5vIkEqugP19Fchc3B7YziS4aIQaSvGnaAF8aQxiWcuPuKd42hrtDYQ91WxZ1tnf0mWlyTcx072m+uK07zu9nLIL5438QTVxPrDdh9cVqt6OiwZgjt6JIPHHX/D8g3QaTVJ7MHEe5aoJm/DjLUOOcbU6ihwsk4sV02olYthChol9aIYFVxiDWbYKwXa0LqiYIifF6meG3IKECRyOhG5AuCC8K9GiLlE2SZQac4TgHrZjKyTEh/vIqODVNRXRPkBijpqmU0wi4jCXmUs5VAFmbZaB8V9hRwsj5fw37F2JFjUwtIuGY6dJJdoowfQzPKS6GnHjw7I+p7TRP1lE7verv2EFI8CLzln2vhqPR5TF88tLrwdc0YDW57SyrzMsFEQalxKb1TI5MxwszUp2RjndSw9by6MMX/uyM/1X7SfCZip39IgABtNFSrgQyesYA7w2EwUuMHyGR2ILiyo3ALP10e/zEOo5XLFf5PdpLis+dAhDKocTi8mr3/F+yyZpyWhgbelXD8ZohrjGZb9UQSwGlHxjh7wrMDILhp574YVPMwGqQJqhn4iqcgoeBWisGLr37WqIDTsy4jo21hN2J8bVtlLbbGyGuALStAbB+nAOx5rxCL+5LqsmuefFRZXsFyjH6rBkhUfvCnsTcHgBOApgT5xU2vK7JXvObc/mgrjRjt0LlzMJ4EnX0fFSHUAR6AQAMJEDSpvzHaRqSVX54vJgPBpqFYNW2JQNa6gxigWYhY8D6jzZtt1IqC667+eyiwvfL2l7WxmJmbftl8kZT6wX5pMrJNPT5dWbCwGcvYVvl436N1PzS1I2NySYZb0VomZ+IpWqqi/oQE8ugnhUrZLnv3K55M/ua2xlCnA34sQJHtr0qOFSfq2/coDwT3NVggO6qU47E6Nxt9KuP1dAvalz42V6ErADxOv4VYeMYle92MqOLG0y6aPlaiS0C1vqxuCo3/isN+2xycCoorlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUS2B1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": "RandomState(MT19937)"
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVUQsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgQjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWwAkAAAAAAABsexnG9byTFNTxOzrsmIaNdvJBGK0HAWHF/uOR4jb9Js8Q01gUepbzS1h9Be2TafT7UqKoVIxuBxIRTVEu0k/0xDqT9q39bIZ/GQmur+A0PhdS/UDy+KFbA38TxBVr2yq8upwiRb+wqEeawhWQjllDuNnoysQTR73vC/PyAESh+kPkQj4Zfy/3oAWU+lRvkssejNYF727wGRwS9t8dHMO9zyLiD0ahCkjtZ+MjzuBKLAVd2IVZgYkdc3J/GZxTqnoSzWd4wMuFztneDgbgvLBJc+zWhp/hVfwcgVlg1PEQtK20Wx5UuRU+slGpcwx40h8CG8IgLpA3SmBHpq8VFjaALRQmUmhI4dY6uF4AXQYhxuQTCkB9BQnEPhrszp2MbKBaOCPQvLVDb5N+i2aM9x/ZDimRL+02TlNz5QZ4CM7hmnSrH4wYrX4w8PHx3LZOWoUzmI6UIhqtFI99MQdxJX2ref3QcuJMVHFArZoAOvCiIIJyX/4TkO5nTE6v20GsL4ckV2dtlofBz1vyLDnvGxZJkIofuKFmdNamh8Sw/W6Gsp4pDyISe1yNxh5oU2417E7iOtUf/68zRZXg9aMmoJ7reZ6BsKkEXUWsW/+LWDN7VUA1ej03BXBzEXJOW1zsXNowaYE5BsmjKJSbPoMv7VpHhzs0cKuf3daq4rIt4cONcz1gWW2txFa5wlR1UWbFcx+Rcga59aw8PO+d295o9aSukdjpSRvuWs2O4GQRpHtN+hfkfrW4rEgZP9/ePKke2mFo+NzzKs25bvwEUAROMwKmMP/cha6+fTMqE7D7QEM8YHpi7xxTajpVJLnu3jwJVMEWWSrsUt5r3hiXdLRxJYywhKuwA8plWEr3/ral80Gb9pS76gXpXK5VAL91uHJwfuH1eYrlGbcoQZJbYU8vVEuR/MAP9U9VfEvBL/oXqykQ4SDgi1PE5ZyX2Q56ZHToXafb5NPzKZaLU8mnT+YGipmmlZA1n1xpOZRiwWyivfs26cOugst/gyl1CIIpo6pGFgB76fMwdid/XeN3NaAmb8CvWDQeysMOI9Z4rUSP84yGEjUb6X3frIJgJhg3n7SRDyjvSRvk1Ao2eRvR/vIJOG7Cy8BcDqVD4OgvhrrrT4SHqMye/TnX72RMoafHgeFFC6dK46mq+PY2LE46pVFKw+bQkPgUaXrwhaoY0q7C6Hacmtk7g9FJhpF35iNMwN3JbiNRL4YvDmqEIjL5FjQMj2s/kkQmnuFcPuQVo91RK6r2SWSSQOogmBPQg0HMVKzm/4lbId8MorE86zgP5kmdhCO1iWpUC/Oz5u/413scmvGXngrcwDSMfo6YxLpsi2SPjDirSBCI/mFxpGY5HCedilpBzMH0Z+2cslcVBwgHpGBNM3iJ60A/Vqwfq9+fxHcAjGzZPvp+6d+ct68yeSpUdP/mPBCtIIlgVkXZyerr0k1NJXiQ1v5Iv01nYeCrJ5p/Z1mE6B8/oEV/0oAQPhGlUdAkYKPP+nuA1H+yyVBVsd5o2Ai9GLsu3ci1ZlR14r53IXrsNfC5qOyVxAbsvpFqRkgUbLzIDNnl1r9FAa5Jn2mdXtyfcXpEXuRCrPUe4BdAp3YqokpHcVArWPgL8wh7wemVvLVOyiNTziW2R5MBVAOink/cFKz/otGI9KpdXzmTUIgztCeX7QaapFdoucib2vk5IB9nGaWrLK9flMeNbuaCZCGwNu4qiU2Eht1GW9h7DlCkUUQ32rhUFJ7iP5KAnVAmj6Wqznf8riHsDcPnxzDBqZMUE/HoimygAe3+pvrSY1emhzyknjuXy7U1Pz+FnaOtDLytt4SkecvE/4w0zi0cuhca/xtZD7b7TqG/IfHJ0w2cMEm7xSfjwqXqAi1kyip4vNiIo7Ugx+k1EztrxdN225rnlnx5j1gm1FUj7LCL5ttbwYq+RdxOY0rCoXdrQQTasjunw8LpiwWoBzvNMtl7o6NVaeWaTsIjy025tDpYCjrbPRa/PezsGQN/WX59iNdKbRcyklENZ0L1EOJIyDdB1dUlV7WCcZXaCffabrx50GS+vldv9G4nlXFHnyeCSwcl7NRmJmyrIS0jiQwKVHNs1DE4puwIKIqLG5Zx3lP8rm9PgjaUaAiciLbQn3HJfKMItigfBvYvJZ9VIG9KcKdjSwnwIoBwwA8fX+cIcexZhA0x8+G97dpGO2EDTdqa3rD6pGFSrcpSSkjDUYdtlBF0fkyTUry3bvJnSSJGcmX5HXvEcq2EbFXeUnxzLt+BJRKRNBylALMKwvamlCi+xECJ5iyKE7R5YbpKD3ETlh7PDlNbwUq0ta1iqLnhxtD/cB4SUJX8DirvYeElPaocjbHFcwI6TpYP6w2mq8ws4srvWTApgbUxHzfSt/XubVGmc87eOzdflF8VaSfkKm2+sgfBChzjGGHgpkZo2qdfr2kZ7E+CuX0IZLf8CeEjosfG2MHEOvSsTKMreDEY2mPl3RchO1U5dN77qogQp0TvDLzHTC8xkRCDO1z8uaboPs4i5NeWtwTsml/aL5XibtOkGOiqySkYO1QhTm5UJcyFySn1ACSaQZ3vSxIl765w21y+yZI8yXQ5L2W6zv/9PnhuuoZCW+zkmG1r78AgSLFVfT75q4/NRBMOAPVTCWDsyygb7ttLVy/MC3hv3qkkg6EE1F0TUwm9ML8igxKFuQke5D1O17o7y526Lg/WWiNPv8IaH6cj4t9pcqpjl0tC3y/ZiWo6m5+R15cqEPmvjwXojo8hvCKHNGypp9hWDKhxP5RfMLmIDfNdBeGn/VCDeMw78SEsdTBBxTL+vl4fdyQKsCiFDKi36E7eyBsx+ta68xwEX9vArHUhjOvVkaMoYakCCzs+oNnnd6boY18DbHrBoQLZhJlQE/oEFf5SyrdKCDZCktf5RNyfZGRgBhJVGgzy1m3tHV7CsBkrJxFkHcKqqVFeL7N+QyYBIM2jYFmpGyX2H8cTaMOC4QPv59RMZr8xMDX1tiKTIWWKvnkaPWkAbEx+KmWBCjfYmgpNOg73HAhLtIyxIbwUOU/7Lme8YCsFARgMmiN3sBkoNbbxSNmXNQslX4uVBBSpaBbvlP/YOjHoa5PfkKJyq1Qmhm81ONhIz/A+sSMIalQb6PvoNW0j6sEkIyfu2BrPPgmHVwFqPPEvRRQt9CtmJBIQ/zBEFjm8EXVgNYnRL4Qb4m+TnVBj0JgVnEWvMDjp35a/67Ou1/WO4ePU3U7xXi0aXknK6Hi2adFKvKk+sttrY1KcWXgOM73UglGiK2Tg4UYHCKef/7DLoc90vxU7F5Fon3l1YEJB+5dyYSWo3qR9UVxyheYB1Pk/OreUaAmMAnU0lImIh5RSlChLA2gNTk5OSv////9K/////0sAdJRiTXAChZSMAUOUdJRSlIwDcG9zlEsYdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": "RandomState(MT19937)"
43
+ },
44
+ "n_envs": 1,
45
+ "num_timesteps": 10240,
46
+ "_total_timesteps": 10000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671649005307572832,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVKQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMey9ob21lL2FrZ2h4aHM1NS9zdHVkeS9odWdnaW5nLWZhY2UvZGVlcC1ybC1jb3Vyc2UvdW5pdDEvLmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMey9ob21lL2FrZ2h4aHM1NS9zdHVkeS9odWdnaW5nLWZhY2UvZGVlcC1ybC1jb3Vyc2UvdW5pdDEvLmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAACYCez7Qf3c/OtElP+VTBb93wPy+S9qAvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.02400000000000002,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVnQ0AAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhjlBm5y0ZcCUhpRSlIwBbJRLf4wBdJRHQNMVFQdXDFZ1fZQoaAZoCWgPQwj6tmCpLlRPwJSGlFKUaBVLTmgWR0DTFRj5tWMkdX2UKGgGaAloD0MImnyzzY0cVsCUhpRSlGgVS1loFkdA0xUcbMX7+HV9lChoBmgJaA9DCPERMSWShFDAlIaUUpRoFUt/aBZHQNMVIbMgU111fZQoaAZoCWgPQwjs20lE+KxcwJSGlFKUaBVLXGgWR0DTFSSt4iX6dX2UKGgGaAloD0MI3o5wWvAPXMCUhpRSlGgVS4doFkdA0xUqjx0+1XV9lChoBmgJaA9DCHb9gt2wN0DAlIaUUpRoFUtmaBZHQNMVMKfe1rt1fZQoaAZoCWgPQwjicrwC0XZWwJSGlFKUaBVLWWgWR0DTFTVClabGdX2UKGgGaAloD0MI1nCRe7pUVMCUhpRSlGgVS0RoFkdA0xU4NWU8m3V9lChoBmgJaA9DCIXRrGwfzGDAlIaUUpRoFUuJaBZHQNMVPsoQWep1fZQoaAZoCWgPQwiaRL3g03lSwJSGlFKUaBVLb2gWR0DTFUTysjmkdX2UKGgGaAloD0MI499nXDjAU8CUhpRSlGgVS0doFkdA0xVH3z+WGHV9lChoBmgJaA9DCKxT5XtGZFHAlIaUUpRoFUtRaBZHQNMVS79deIF1fZQoaAZoCWgPQwi/mC1ZFShRwJSGlFKUaBVLW2gWR0DTFVD6XSjQdX2UKGgGaAloD0MIri6nBMQAScCUhpRSlGgVS05oFkdA0xVUYYixFHV9lChoBmgJaA9DCAWnPpC8e17AlIaUUpRoFUuSaBZHQNMVW7FwT/R1fZQoaAZoCWgPQwjPEfkupYZSwJSGlFKUaBVLWmgWR0DTFWKM6zVudX2UKGgGaAloD0MIzehHwynfUMCUhpRSlGgVS09oFkdA0xVmuBtk4HV9lChoBmgJaA9DCObo8XubqVvAlIaUUpRoFUt8aBZHQNMVbFiKBNF1fZQoaAZoCWgPQwiOB1vsdoNjwJSGlFKUaBVLfWgWR0DTFXCFxn3+dX2UKGgGaAloD0MIEd+JWS+2PMCUhpRSlGgVS31oFkdA0xWRYIBzWHV9lChoBmgJaA9DCHh7EALyS1fAlIaUUpRoFUtxaBZHQNMVmzSLIgh1fZQoaAZoCWgPQwiGrG71HEFkwJSGlFKUaBVLY2gWR0DTFZ/SJCSidX2UKGgGaAloD0MINzl80gn9Y8CUhpRSlGgVS3VoFkdA0xWmSPEKmnV9lChoBmgJaA9DCGE3bFuUoU3AlIaUUpRoFUtXaBZHQNMVq37Lt/p1fZQoaAZoCWgPQwjOwTOhSUo2wJSGlFKUaBVLbWgWR0DTFbAB1cMWdX2UKGgGaAloD0MInS6Lic3pScCUhpRSlGgVS4RoFkdA0xW7rPdEcHV9lChoBmgJaA9DCO/hkuNOWRxAlIaUUpRoFUuSaBZHQNMVw+QIUrV1fZQoaAZoCWgPQwgdPX5vUxRpwJSGlFKUaBVLfWgWR0DTFcixKQJYdX2UKGgGaAloD0MIVp+rrdh/OkCUhpRSlGgVS2doFkdA0xXNTt9hJHV9lChoBmgJaA9DCElpNo9DEWnAlIaUUpRoFUuAaBZHQNMV09hmXgN1fZQoaAZoCWgPQwhkeOxnsWpTwJSGlFKUaBVLiGgWR0DTFeJ1klNUdX2UKGgGaAloD0MIgnAFFOrJZMCUhpRSlGgVS3loFkdA0xXr8wHqvHV9lChoBmgJaA9DCIoAp3fxuVfAlIaUUpRoFUuDaBZHQNMV8iiVSoB1fZQoaAZoCWgPQwgkCcIVUHJIwJSGlFKUaBVLUWgWR0DTFfa97F85dX2UKGgGaAloD0MIoWZIFcWvSMCUhpRSlGgVS4ZoFkdA0xX8IToMa3V9lChoBmgJaA9DCKvoD808oUHAlIaUUpRoFUtDaBZHQNMV/qtozvZ1fZQoaAZoCWgPQwjF46JaRFBHwJSGlFKUaBVLYGgWR0DTFgMTL4etdX2UKGgGaAloD0MIwktw6gODUMCUhpRSlGgVS3VoFkdA0xYh8Md92HV9lChoBmgJaA9DCKm9iLZjgENAlIaUUpRoFUtRaBZHQNMWKj4593N1fZQoaAZoCWgPQwhaKm9HOF05wJSGlFKUaBVL02gWR0DTFjcMfA9FdX2UKGgGaAloD0MIdY4B2ev1SMCUhpRSlGgVS3ZoFkdA0xZFO0b963V9lChoBmgJaA9DCPPixFc7TEzAlIaUUpRoFUtaaBZHQNMWTVImPYF1fZQoaAZoCWgPQwiVZYhjXT5KwJSGlFKUaBVLcGgWR0DTFlLaTOgQdX2UKGgGaAloD0MIEY3uIPZGZMCUhpRSlGgVS8doFkdA0xZcItDlYHV9lChoBmgJaA9DCHKMZI9Q4xlAlIaUUpRoFUufaBZHQNMWZaDkELZ1fZQoaAZoCWgPQwhjmBO0yQEEQJSGlFKUaBVLvWgWR0DTFnBqynk1dX2UKGgGaAloD0MIjgJEwYyPRsCUhpRSlGgVS3FoFkdA0xZ3gm7aqXV9lChoBmgJaA9DCH0fDhKiIDfAlIaUUpRoFUugaBZHQNMWhrILgGd1fZQoaAZoCWgPQwg3UOCdfAdRwJSGlFKUaBVLgWgWR0DTFpS9/SYxdX2UKGgGaAloD0MI3XwjumcfZsCUhpRSlGgVS2xoFkdA0xabTHKfWnV9lChoBmgJaA9DCPZcpiZBim7AlIaUUpRoFUuZaBZHQNMWpR1klNV1fZQoaAZoCWgPQwgwZHWr545owJSGlFKUaBVLYmgWR0DTFql+mWMTdX2UKGgGaAloD0MIqmIq/QSDYsCUhpRSlGgVS3RoFkdA0xbK1lGwzXV9lChoBmgJaA9DCPYjRWRY3SXAlIaUUpRoFUtsaBZHQNMWz3TAnD11fZQoaAZoCWgPQwhCP1OvW8g/wJSGlFKUaBVLXmgWR0DTFtTru6VddX2UKGgGaAloD0MIcqYJ20+uVsCUhpRSlGgVS3ZoFkdA0xbcRoAXEnV9lChoBmgJaA9DCOWaApmdCljAlIaUUpRoFUt9aBZHQNMW4QqNIbx1fZQoaAZoCWgPQwhODMnJxMdYwJSGlFKUaBVLYGgWR0DTFuR/7SApdX2UKGgGaAloD0MIob/QI0Y9XMCUhpRSlGgVS3ZoFkdA0xbsMQ2/BXV9lChoBmgJaA9DCBzRPevaYnPAlIaUUpRoFUvQaBZHQNMW+jOoo/l1fZQoaAZoCWgPQwijQJ/IkzRjwJSGlFKUaBVLdWgWR0DTFwL7xd6cdX2UKGgGaAloD0MIHR1XIzvXYcCUhpRSlGgVS3xoFkdA0xcIUd7v5XV9lChoBmgJaA9DCOaQ1ELJ5JS/lIaUUpRoFUtkaBZHQNMXDIJAt4B1fZQoaAZoCWgPQwij5qvk49dlwJSGlFKUaBVLt2gWR0DTFxfJyQxOdX2UKGgGaAloD0MI1ESfj7KgZcCUhpRSlGgVS5poFkdA0xcgSNOuaHV9lChoBmgJaA9DCHRBfcucakHAlIaUUpRoFUttaBZHQNMXI90Rvm51fZQoaAZoCWgPQwhKfy+FB7VRwJSGlFKUaBVLfWgWR0DTFyjCXQdCdX2UKGgGaAloD0MIP4ulSL5mXMCUhpRSlGgVS5VoFkdA0xcxupjtonV9lChoBmgJaA9DCOfCSC9qvlPAlIaUUpRoFUtpaBZHQNMXT7rgOz91fZQoaAZoCWgPQwg+Qs2QKstWwJSGlFKUaBVLZGgWR0DTF1RoQFs6dX2UKGgGaAloD0MIN3AH6pRAV8CUhpRSlGgVS4loFkdA0xdcKL8763V9lChoBmgJaA9DCLKhm/0BfGnAlIaUUpRoFUvQaBZHQNMXbR4QjD91fZQoaAZoCWgPQwjjGwqfratYwJSGlFKUaBVLu2gWR0DTF31vBJqZdX2UKGgGaAloD0MIgNWRIx3mYcCUhpRSlGgVS4toFkdA0xeFReC04XV9lChoBmgJaA9DCPjddMsOqGPAlIaUUpRoFUuBaBZHQNMXi8mrsB11fZQoaAZoCWgPQwi296kqNK1dwJSGlFKUaBVLimgWR0DTF5KtGNJfdX2UKGgGaAloD0MIIuNRKuGZSsCUhpRSlGgVS2doFkdA0xeXL/jsEHV9lChoBmgJaA9DCAu2EU92hFLAlIaUUpRoFUt6aBZHQNMXnPgeii91fZQoaAZoCWgPQwg429yYnoZRwJSGlFKUaBVLYmgWR0DTF6DhQ3xXdX2UKGgGaAloD0MIlYJuL2lBUsCUhpRSlGgVS1toFkdA0xelpPAO8XV9lChoBmgJaA9DCP1s5Lop1FTAlIaUUpRoFUtnaBZHQNMXq60pmVZ1fZQoaAZoCWgPQwi4W5IDdmtowJSGlFKUaBVLkmgWR0DTF7MfW+XadX2UKGgGaAloD0MI2uOFdHicTsCUhpRSlGgVS4toFkdA0xe5sO5J9XVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 60,
79
+ "n_steps": 2048,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVKQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMey9ob21lL2FrZ2h4aHM1NS9zdHVkeS9odWdnaW5nLWZhY2UvZGVlcC1ybC1jb3Vyc2UvdW5pdDEvLmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMey9ob21lL2FrZ2h4aHM1NS9zdHVkeS9odWdnaW5nLWZhY2UvZGVlcC1ybC1jb3Vyc2UvdW5pdDEvLmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null,
94
+ "name": "ppo-lunarlander-v2"
95
+ }
ppo-lunarlander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db3b9cd8ea15c8e796b80f547c4bcb8f0c1651231108ba2ba3e009aabb6b46ea
3
+ size 87545
ppo-lunarlander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:094fa84be286d267d5120ac6172040e4702e7a0657680983130826c33f0a7a20
3
+ size 43073
ppo-lunarlander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-lunarlander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.15.79.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 #1 SMP Wed Nov 23 01:01:46 UTC 2022
2
+ Python: 3.10.6
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.1+cu117
5
+ GPU Enabled: False
6
+ Numpy: 1.24.0
7
+ Gym: 0.21.0
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1427.2811583858534, "std_reward": 726.9205093163398, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-22T03:57:43.110419"}