File size: 3,220 Bytes
05df77c f53ec13 734bbf1 f53ec13 734bbf1 7128176 734bbf1 f53ec13 734bbf1 f53ec13 734bbf1 7128176 f53ec13 7128176 f53ec13 7128176 734bbf1 7128176 f53ec13 7128176 f53ec13 7128176 f53ec13 7128176 f53ec13 7128176 734bbf1 7128176 f53ec13 7128176 f53ec13 734bbf1 7128176 f53ec13 a1cfb70 7128176 734bbf1 f53ec13 734bbf1 f53ec13 734bbf1 f53ec13 7128176 f53ec13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
library_name: transformers
tags:
- llama
- fine-tuned
- physics
- smolLM
- LoRA
license: apache-2.0
---
# fine-tuned-smolLM2-135M-with-LoRA-on-camel-ai-physics
This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-135M](https://huggingface.co/HuggingFaceTB/SmolLM2-135M) on the dataset [akhilfau/physics_decontaminated_2](https://huggingface.co/datasets/akhilfau/physics_decontaminated_2). This dataset was created by decontaminating the [camel-ai/physics](https://huggingface.co/datasets/camel-ai/physics) dataset from [mmlu:college_physics](https://huggingface.co/datasets/lighteval/mmlu).
---
## Model Performance
This model was evaluated on **MMLU: college_physics** using **LightEval**. The evaluation compared the base model (HuggingFaceTB/SmolLM2-135M) and the fine-tuned model (akhilfau/fine-tuned-smolLM2-135M-with-LoRA-on-camel-ai-physics). Results are as follows:
## Model Description
The fine-tuned model leverages **LoRA (Low-Rank Adaptation)** for parameter-efficient fine-tuning. The base model is SmolLM2-135M, which uses the **LlamaForCausalLM** architecture, and it was fine-tuned to enhance its understanding of physics-related questions and answers using the **akhilfau/physics_decontaminated_2** dataset.
---
## Training and Evaluation Data
### Dataset Details:
- **Training Dataset:** [akhilfau/physics_decontaminated_2](https://huggingface.co/datasets/akhilfau/physics_decontaminated_2)
- **Evaluation Dataset:** [mmlu:college_physics](https://huggingface.co/datasets/lighteval/mmlu/viewer/college_physics)
The training dataset was decontaminated to ensure no overlap with the evaluation dataset for fair performance testing.
---
## Training Procedure
### Training Hyperparameters
| Hyperparameter | Value |
|---------------------------|--------------------|
| Learning Rate | 0.0005 |
| Train Batch Size | 4 |
| Eval Batch Size | 4 |
| Seed | 42 |
| Optimizer | AdamW with betas=(0.9, 0.999), epsilon=1e-8 |
| LR Scheduler Type | Cosine |
| Number of Epochs | 8 |
### Training Results
| Training Loss | Epoch | Step | Validation Loss |
|---------------|-------|-------|-----------------|
| 1.0151 | 1.0 | 4000 | 1.0407 |
| 1.0234 | 2.0 | 8000 | 1.0087 |
| 0.9995 | 3.0 | 12000 | 0.9921 |
| 0.9528 | 4.0 | 16000 | 0.9824 |
| 0.9353 | 5.0 | 20000 | 0.9755 |
| 0.9121 | 6.0 | 24000 | 0.9720 |
| 0.9175 | 7.0 | 28000 | 0.9707 |
| 0.9197 | 8.0 | 32000 | 0.9706 |
---
## Intended Use
This model is specifically fine-tuned for physics-related reasoning tasks and QA tasks. It may perform well on datasets that require understanding physics-related problems and concepts. Evaluation results show a measurable improvement compared to the base model on MMLU college physics tasks.
---
## Framework Versions
- **PEFT**: 0.13.2
- **Transformers**: 4.46.2
- **Pytorch**: 2.4.1+cu121
- **Datasets**: 3.1.0
- **Tokenizers**: 0.20.3 |