File size: 28,733 Bytes
d90b3a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
# Copyright (c) 2024, EleutherAI
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import torch
import numpy as np
from typing import List, Tuple
from itertools import zip_longest, cycle
from functools import partial

from megatron import mpu, print_rank_0
from megatron.data.indexed_dataset import make_dataset as make_indexed_dataset
from megatron.data.blendable_dataset import BlendableDataset
from megatron.data.gpt2_dataset import GPT2Dataset
from megatron.data.pairwise_dataset import PairwiseDataset
from megatron.data.samplers import DistributedBatchSampler


def make_data_loader(dataset, neox_args):
    """Build dataloader given an input dataset."""
    if dataset is None:
        return None
    # Data parallel arguments.
    world_size = mpu.get_data_parallel_world_size()
    rank = mpu.get_data_parallel_rank()
    global_batch_size = neox_args.batch_size * world_size
    num_workers = neox_args.num_workers

    # Use a simple sampler with distributed batch sampler.
    sampler = torch.utils.data.SequentialSampler(dataset)
    batch_sampler = DistributedBatchSampler(
        sampler=sampler,
        batch_size=global_batch_size,
        drop_last=True,
        rank=rank,
        world_size=world_size,
    )
    # Torch dataloader.
    return torch.utils.data.DataLoader(
        dataset, batch_sampler=batch_sampler, num_workers=num_workers, pin_memory=True
    )


def build_the_dataset(
    data_prefix,
    pos_data_prefix,
    neg_data_prefix,
    name,
    data_impl,
    pack_impl,
    dataset_impl,
    allow_chopped,
    num_samples,
    num_epochs,
    seq_length,
    seed,
    skip_warmup,
    build_index_mappings=True,
    label_prefix=None,
    pos_label_prefix=None,
    neg_label_prefix=None,
    precompute_model_name=None,
    reward_prefix=None,
):
    """Build train/valid/test datasets."""
    if dataset_impl == "gpt2":
        indexed_dataset = make_indexed_dataset(data_prefix, data_impl, skip_warmup)
        if label_prefix is None:
            label_dataset = None
        else:
            label_dataset = make_indexed_dataset(label_prefix, data_impl, skip_warmup)
        if precompute_model_name is not None:
            # If we have the name, assume it exists. If it doesn't, it will just be None which is fine.
            precompute_indexed_dataset = make_indexed_dataset(
                data_prefix + "_" + precompute_model_name, data_impl, skip_warmup
            )
            precompute_indexed_dataset = precompute_indexed_dataset
        else:
            precompute_indexed_dataset = None
        if reward_prefix is not None:
            reward_dataset = make_indexed_dataset(reward_prefix, data_impl, skip_warmup)
        else:
            reward_dataset = None
    elif dataset_impl == "pairwise":
        pos_indexed_dataset = make_indexed_dataset(
            pos_data_prefix, data_impl, skip_warmup
        )
        neg_indexed_dataset = make_indexed_dataset(
            neg_data_prefix, data_impl, skip_warmup
        )
        if pos_label_prefix is None:
            pos_label_dataset = None
            # Also do neg here since they both must be the same
            assert neg_label_prefix is None
            neg_label_dataset = None
        else:
            pos_label_dataset = make_indexed_dataset(
                pos_label_prefix, data_impl, skip_warmup
            )
            # Also do neg here since they both must be the same
            assert neg_label_prefix is not None
            neg_label_dataset = make_indexed_dataset(
                neg_label_prefix, data_impl, skip_warmup
            )
        if precompute_model_name is None:
            pos_ref_dataset = None
            neg_ref_dataset = None
        else:
            pos_ref_dataset = make_indexed_dataset(
                pos_data_prefix + "_" + precompute_model_name, data_impl, skip_warmup
            )
            neg_ref_dataset = make_indexed_dataset(
                neg_data_prefix + "_" + precompute_model_name, data_impl, skip_warmup
            )
    else:
        raise NotImplementedError(f"dataset_impl={dataset_impl} not implemented")

    total_num_of_documents = (
        indexed_dataset.sizes.shape[0]
        if dataset_impl == "gpt2"
        else pos_indexed_dataset.sizes.shape[0]
    )
    print_rank_0("    {}:".format(name))
    print_rank_0("     no. of documents:{}".format(total_num_of_documents))
    dataset = None
    documents = np.arange(start=0, stop=total_num_of_documents, step=1, dtype=np.int32)
    if dataset_impl == "gpt2":
        dataset = GPT2Dataset(
            name,
            data_prefix,
            documents,
            indexed_dataset,
            num_samples,
            num_epochs,
            seq_length,
            seed,
            pack_impl=pack_impl,
            allow_chopped=allow_chopped,
            build_index_mappings=build_index_mappings,
            label_dataset=label_dataset,
            reward_dataset=reward_dataset,
            ref_dataset=precompute_indexed_dataset,
        )
    elif dataset_impl == "pairwise":
        dataset = PairwiseDataset(
            name,
            pos_data_prefix,
            documents,
            pos_indexed_dataset,
            neg_indexed_dataset,
            num_samples,
            seq_length,
            seed,
            pack_impl=pack_impl,
            allow_chopped=allow_chopped,
            build_index_mappings=build_index_mappings,
            pos_label_dataset=pos_label_dataset,
            neg_label_dataset=neg_label_dataset,
            pos_ref_dataset=pos_ref_dataset,
            neg_ref_dataset=neg_ref_dataset,
        )
    return dataset


def build_train_valid_test_datasets(
    data_prefix,
    use_shared_fs,
    data_impl,
    pack_impl,
    allow_chopped,
    splits_string,
    train_valid_test_num_samples,
    train_valid_test_epochs,
    seq_length,
    seed,
    skip_warmup,
):
    """Build train, valid, and test datasets."""

    # Indexed dataset.
    indexed_dataset = make_indexed_dataset(data_prefix, data_impl, skip_warmup)

    total_num_of_documents = indexed_dataset.sizes.shape[0]
    splits = get_train_valid_test_split_(splits_string, total_num_of_documents)

    # Print stats about the splits.
    print_rank_0(" > dataset split:")

    def print_split_stats(name, index):
        print_rank_0("    {}:".format(name))
        print_rank_0(
            "     document indices in [{}, {}) total of {} "
            "documents".format(
                splits[index], splits[index + 1], splits[index + 1] - splits[index]
            )
        )

    print_split_stats("train", 0)
    print_split_stats("validation", 1)
    print_split_stats("test", 2)

    def build_dataset(index, name):
        dataset = None
        if splits[index + 1] > splits[index]:
            documents = np.arange(
                start=splits[index], stop=splits[index + 1], step=1, dtype=np.int32
            )
            dataset = GPT2Dataset(
                name,
                data_prefix,
                documents,
                indexed_dataset,
                train_valid_test_num_samples[index],
                train_valid_test_epochs[index],
                seq_length,
                seed,
                pack_impl=pack_impl,
                allow_chopped=allow_chopped,
                use_shared_fs=use_shared_fs,
            )
        return dataset

    train_dataset = build_dataset(0, "train")
    valid_dataset = build_dataset(1, "valid")
    test_dataset = build_dataset(2, "test")

    return train_dataset, valid_dataset, test_dataset


def get_train_valid_test_split_(splits_string, size):
    """Get dataset splits from comma or '/' separated string list."""

    splits = []
    if splits_string.find(",") != -1:
        splits = [float(s) for s in splits_string.split(",")]
    elif splits_string.find("/") != -1:
        splits = [float(s) for s in splits_string.split("/")]
    else:
        splits = [float(splits_string)]
    while len(splits) < 3:
        splits.append(0.0)
    splits = splits[:3]
    splits_sum = sum(splits)
    assert splits_sum > 0.0
    splits = [split / splits_sum for split in splits]
    splits_index = [0]
    for index, split in enumerate(splits):
        splits_index.append(splits_index[index] + int(round(split * float(size))))
    diff = splits_index[-1] - size
    for index in range(1, len(splits_index)):
        splits_index[index] -= diff
    assert len(splits_index) == 4
    assert splits_index[-1] == size
    return splits_index


def get_normalized_weights_and_num_samples(
    weights: List[float], num_samples: int
) -> Tuple[List[float], List[int]]:
    # Normalize weights
    weight_sum = sum(weights)
    assert weight_sum > 0.0
    weights = [weight / weight_sum for weight in weights]
    if num_samples is not None:
        # Add 0.5% (the 1.005 factor) so in case the blending dataset does
        # not uniformly distribute the number of samples, we still have
        # samples left to feed to the network.
        weighted_num_samples = []
        for weight in weights:
            weighted_num_samples.append(int(math.ceil(num_samples * weight * 1.005)))
    else:
        weighted_num_samples = [None for _ in weights]
    return weights, weighted_num_samples


def build_weighted_datasets(
    neox_args,
    train_num_samples,
    valid_num_samples,
    test_num_samples,
    train_epochs,
    valid_epochs,
    test_epochs,
    build_index_mappings=True,
):
    # build individual datasets
    train_datasets, valid_datasets, test_datasets = [], [], []
    for i, (
        train_path,
        train_label_path,
        train_reward_path,
        valid_path,
        valid_label_path,
        valid_reward_path,
        test_path,
        test_label_path,
        test_reward_path,
        pos_train_path,
        neg_train_path,
        pos_train_label_path,
        neg_train_label_path,
        pos_valid_path,
        neg_valid_path,
        pos_valid_label_path,
        neg_valid_label_path,
        pos_test_path,
        neg_test_path,
        pos_test_label_path,
        neg_test_label_path,
    ) in enumerate(
        zip_longest(
            neox_args.train_data_paths if neox_args.train_data_paths else [],
            neox_args.train_label_data_paths
            if neox_args.train_label_data_paths
            else [],
            neox_args.train_reward_data_paths
            if neox_args.train_reward_data_paths
            else [],
            neox_args.valid_data_paths if neox_args.valid_data_paths else [],
            neox_args.valid_label_data_paths
            if neox_args.valid_label_data_paths
            else [],
            neox_args.valid_reward_data_paths
            if neox_args.valid_reward_data_paths
            else [],
            neox_args.test_data_paths if neox_args.test_data_paths else [],
            neox_args.test_label_data_paths if neox_args.test_label_data_paths else [],
            neox_args.test_reward_data_paths
            if neox_args.test_reward_data_paths
            else [],
            neox_args.pos_train_data_paths if neox_args.pos_train_data_paths else [],
            neox_args.neg_train_data_paths if neox_args.neg_train_data_paths else [],
            neox_args.pos_train_label_data_paths
            if neox_args.pos_train_label_data_paths
            else [],
            neox_args.neg_train_label_data_paths
            if neox_args.neg_train_label_data_paths
            else [],
            neox_args.pos_valid_data_paths if neox_args.pos_valid_data_paths else [],
            neox_args.neg_valid_data_paths if neox_args.neg_valid_data_paths else [],
            neox_args.pos_valid_label_data_paths
            if neox_args.pos_valid_label_data_paths
            else [],
            neox_args.neg_valid_label_data_paths
            if neox_args.neg_valid_label_data_paths
            else [],
            neox_args.pos_test_data_paths if neox_args.pos_test_data_paths else [],
            neox_args.neg_test_data_paths if neox_args.neg_test_data_paths else [],
            neox_args.pos_test_label_data_paths
            if neox_args.pos_test_label_data_paths
            else [],
            neox_args.neg_test_label_data_paths
            if neox_args.neg_test_label_data_paths
            else [],
        )
    ):
        if train_path or pos_train_path:
            train_datasets.append(
                build_the_dataset(
                    data_prefix=train_path,
                    name=f"train_{i}",
                    data_impl=neox_args.data_impl,
                    pack_impl=neox_args.pack_impl,
                    allow_chopped=neox_args.allow_chopped,
                    num_samples=train_num_samples[i],
                    num_epochs=train_epochs,
                    seq_length=neox_args.seq_length,
                    seed=neox_args.seed,
                    skip_warmup=(not neox_args.mmap_warmup),
                    build_index_mappings=build_index_mappings,
                    label_prefix=train_label_path,
                    dataset_impl=neox_args.dataset_impl,
                    pos_data_prefix=pos_train_path,
                    neg_data_prefix=neg_train_path,
                    pos_label_prefix=pos_train_label_path,
                    neg_label_prefix=neg_train_label_path,
                    precompute_model_name=neox_args.precompute_model_name,
                    reward_prefix=train_reward_path,
                )
            )

        if valid_path or pos_valid_path:
            valid_datasets.append(
                build_the_dataset(
                    data_prefix=valid_path,
                    name=f"valid_{i}",
                    data_impl=neox_args.data_impl,
                    pack_impl=neox_args.pack_impl,
                    allow_chopped=neox_args.allow_chopped,
                    num_samples=valid_num_samples[i],
                    num_epochs=valid_epochs,
                    seq_length=neox_args.seq_length,
                    seed=neox_args.seed,
                    skip_warmup=(not neox_args.mmap_warmup),
                    build_index_mappings=build_index_mappings,
                    label_prefix=valid_label_path,
                    dataset_impl=neox_args.dataset_impl,
                    pos_data_prefix=pos_valid_path,
                    neg_data_prefix=neg_valid_path,
                    pos_label_prefix=pos_valid_label_path,
                    neg_label_prefix=neg_valid_label_path,
                    precompute_model_name=neox_args.precompute_model_name,
                    reward_prefix=valid_reward_path,
                )
            )

        if test_path or pos_test_path:
            test_datasets.append(
                build_the_dataset(
                    data_prefix=test_path,
                    name=f"test_{i}",
                    data_impl=neox_args.data_impl,
                    pack_impl=neox_args.pack_impl,
                    allow_chopped=neox_args.allow_chopped,
                    num_samples=test_num_samples[i],
                    num_epochs=test_epochs,
                    seq_length=neox_args.seq_length,
                    seed=neox_args.seed,
                    skip_warmup=(not neox_args.mmap_warmup),
                    build_index_mappings=build_index_mappings,
                    label_prefix=test_label_path,
                    dataset_impl=neox_args.dataset_impl,
                    pos_data_prefix=pos_test_path,
                    neg_data_prefix=neg_test_path,
                    pos_label_prefix=pos_test_label_path,
                    neg_label_prefix=neg_test_label_path,
                    precompute_model_name=neox_args.precompute_model_name,
                    reward_prefix=test_reward_path,
                )
            )
    return train_datasets, valid_datasets, test_datasets


def weights_by_num_docs(l: list, alpha=0.3):
    """
    Builds weights from a multinomial distribution over groups of data according to the number of
    samples in each group.

    We sample from a group according to the probability p(L) ∝ |L| ** α,
    where p(L) is the probability of sampling from a given group,
          |L| is the number of examples in that datapoint,
          and α is a coefficient that acts to upsample data from underrepresented groups

    Hence α (`alpha`) allows us to control how much to 'boost' the probability of training on low-resource groups.

    See https://arxiv.org/abs/1911.02116 for more details
    """
    if len(l) == 1:
        return [1.0]

    total_n_docs = sum(l)
    unbiased_sample_probs = [i / total_n_docs for i in l]

    probs = [i**alpha for i in unbiased_sample_probs]

    # normalize
    total = sum(probs)
    probs = [i / total for i in probs]

    # weights should be the inverse of the number of samples
    unbiased_sample_probs_inverse = [1 - p for p in unbiased_sample_probs]
    weights = [p * p2 for p, p2 in zip(probs, unbiased_sample_probs_inverse)]

    # normalize
    total = sum(weights)
    weights = [i / total for i in weights]

    return weights


def validate_train_epochs(neox_args):
    """Check for unsupported neox_args when using train_epochs instead of train_iters"""
    if neox_args.train_epochs is None:
        return

    if neox_args.train_epochs and neox_args.train_iters:
        raise ValueError(
            "Cannot specify both train epochs and train iters simultaneously"
        )

    if neox_args.pack_impl != "packed":
        raise ValueError(
            "Packing implementations other than 'packed' are currently unsupported with train_epochs"
        )

    if neox_args.weight_by_num_documents:
        raise ValueError(
            "Weighting by number of documents is currently unsupported with train_epochs"
        )

    if neox_args.train_data_weights and (
        not all(weight == 1.0 for weight in neox_args.train_data_weights)
    ):
        raise ValueError(
            "train_data_weights != None is currently unsupported with train_epochs"
        )

    if neox_args.dataset_impl != "gpt2":
        raise ValueError(
            "non gpt2 datasets are not currently unsupported with train_epochs"
        )


def build_train_valid_test_data_loaders(neox_args):
    """XXX"""

    validate_train_epochs(neox_args)

    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0("> building train, validation, and test datasets ...")

    # Ensure only the first/last pipeline stages have data loaders
    if neox_args.is_pipe_parallel:
        is_first_stage = mpu.get_pipe_parallel_rank() == 0
        is_last_stage = (
            mpu.get_pipe_parallel_rank() == mpu.get_pipe_parallel_world_size() - 1
        )
        pipe_load = is_first_stage or is_last_stage
    else:
        pipe_load = True

    # Data loader only on rank 0 of each model parallel group.
    if mpu.get_model_parallel_rank() == 0 and pipe_load:
        # Number of train/valid/test samples.
        if neox_args.train_iters is not None:
            train_iters = neox_args.train_iters
            eval_iters = (
                train_iters // neox_args.eval_interval + 1
            ) * neox_args.eval_iters
            test_iters = neox_args.eval_iters
            train_val_test_num_samples = [
                train_iters * neox_args.train_batch_size,
                eval_iters * neox_args.train_batch_size,
                test_iters * neox_args.train_batch_size,
            ]
            train_val_test_epochs = [None, None, None]
        elif neox_args.train_epochs is not None:
            train_val_test_num_samples = [None, None, None]
            train_val_test_epochs = [1, 1, 1]

        if (neox_args.train_data_paths) or (neox_args.pos_train_data_paths):
            # when individual train / valid / test data paths are provided
            # normalize weight values and get num samples for each dataset
            train_weights, train_num_samples = get_normalized_weights_and_num_samples(
                neox_args.train_data_weights, train_val_test_num_samples[0]
            )
            valid_weights, valid_num_samples = get_normalized_weights_and_num_samples(
                neox_args.valid_data_weights, train_val_test_num_samples[1]
            )
            test_weights, test_num_samples = get_normalized_weights_and_num_samples(
                neox_args.test_data_weights, train_val_test_num_samples[2]
            )

            # build individual datasets
            train_datasets, valid_datasets, test_datasets = build_weighted_datasets(
                neox_args,
                train_num_samples,
                valid_num_samples,
                test_num_samples,
                train_val_test_epochs[0],
                train_val_test_epochs[1],
                train_val_test_epochs[2],
                build_index_mappings=not neox_args.weight_by_num_documents,
            )

            if neox_args.weight_by_num_documents:
                # gets the number of documents in each datapath
                get_num_docs_list = lambda datasets: [
                    dataset.indexed_dataset.sizes.shape[0] for dataset in datasets
                ]
                train_num_docs, valid_num_docs, test_num_docs = (
                    get_num_docs_list(train_datasets),
                    get_num_docs_list(valid_datasets),
                    get_num_docs_list(test_datasets),
                )

                # builds weights according to alpha + the number of docs
                fn = partial(
                    weights_by_num_docs, alpha=neox_args.weighted_sampler_alpha
                )
                train_weights, valid_weights, test_weights = (
                    fn(train_num_docs),
                    fn(valid_num_docs),
                    fn(test_num_docs),
                )
                (
                    train_weights,
                    train_num_samples,
                ) = get_normalized_weights_and_num_samples(
                    train_weights, train_val_test_num_samples[0]
                )
                (
                    valid_weights,
                    valid_num_samples,
                ) = get_normalized_weights_and_num_samples(
                    valid_weights, train_val_test_num_samples[1]
                )
                test_weights, test_num_samples = get_normalized_weights_and_num_samples(
                    test_weights, train_val_test_num_samples[2]
                )

                # rebuild datasets weighted according to new weights
                train_datasets, valid_datasets, test_datasets = build_weighted_datasets(
                    neox_args,
                    train_num_samples,
                    valid_num_samples,
                    test_num_samples,
                    train_val_test_epochs[0],
                    train_val_test_epochs[1],
                    train_val_test_epochs[2],
                )

            if train_datasets:
                train_ds = BlendableDataset(train_datasets, train_weights)
            if valid_datasets:
                valid_ds = BlendableDataset(valid_datasets, valid_weights)
            if test_datasets:
                test_ds = BlendableDataset(test_datasets, test_weights)
        else:
            # when just data_path is provided
            # split dataset into train, valid and test from data_path
            train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
                data_prefix=neox_args.data_path,
                use_shared_fs=neox_args.use_shared_fs,
                data_impl=neox_args.data_impl,
                splits_string=neox_args.split,
                train_valid_test_num_samples=train_val_test_num_samples,
                train_valid_test_epochs=train_val_test_epochs,
                seq_length=neox_args.seq_length,
                seed=neox_args.seed,
                skip_warmup=(not neox_args.mmap_warmup),
                pack_impl=neox_args.pack_impl,
                allow_chopped=neox_args.allow_chopped,
            )

        # Build dataloders.
        train_dataloader = make_data_loader(train_ds, neox_args=neox_args)
        valid_dataloader = make_data_loader(valid_ds, neox_args=neox_args)
        test_dataloader = make_data_loader(test_ds, neox_args=neox_args)

        # Flags to know if we need to do training/validation/testing.
        if neox_args.train_epochs:
            do_train = train_dataloader is not None
            do_valid = valid_dataloader is not None
            do_test = test_dataloader is not None
        else:
            do_train = train_dataloader is not None and neox_args.train_iters > 0
            do_valid = valid_dataloader is not None and neox_args.eval_iters > 0
            do_test = test_dataloader is not None and neox_args.eval_iters > 0

        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor([int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    if neox_args.is_pipe_parallel:
        # Only first/last pipeline stages have data loaders, so pipeline parallelism should
        # broadcast globally instead of just the model parallel group.
        torch.distributed.broadcast(flags, src=0)
    else:
        torch.distributed.broadcast(
            flags,
            mpu.get_model_parallel_src_rank(),
            group=mpu.get_model_parallel_group(),
        )
    neox_args.do_train = flags[0].item()
    neox_args.do_valid = flags[1].item()
    neox_args.do_test = flags[2].item()
    data_loaders = {
        "train": train_dataloader,
        "valid": valid_dataloader,
        "test": test_dataloader,
    }
    return data_loaders


def shift_and_wrap_data_loaders(neox_args, data_loaders, loop=True):
    """Shift start iteration and wrap data_loaders in iterators"""
    train_dataloader = data_loaders["train"]
    valid_dataloader = data_loaders["valid"]
    test_dataloader = data_loaders["test"]

    # Shift the start iterations.
    if train_dataloader is not None:
        train_dataloader.batch_sampler.start_iter = (
            neox_args.iteration * neox_args.gradient_accumulation_steps
        ) % len(train_dataloader)
        print_rank_0(
            "setting training data start iteration to {}".format(
                train_dataloader.batch_sampler.start_iter
            )
        )
    if valid_dataloader is not None:
        start_iter_val = (
            (neox_args.iteration * neox_args.gradient_accumulation_steps)
            // neox_args.eval_interval
        ) * neox_args.eval_iters
        valid_dataloader.batch_sampler.start_iter = start_iter_val % len(
            valid_dataloader
        )
        print_rank_0(
            "setting validation data start iteration to {}".format(
                valid_dataloader.batch_sampler.start_iter
            )
        )

    def loop_iterator(data_loader):
        while True:
            for x in data_loader:
                yield x
            data_loader.start_iter = 0

    # Build iterators.
    if train_dataloader is not None:
        if loop:
            train_data_iterator = cycle(train_dataloader)
        else:
            train_data_iterator = iter(train_dataloader)
    else:
        train_data_iterator = None

    if valid_dataloader is not None:
        if loop:
            valid_data_iterator = cycle(valid_dataloader)
        else:
            valid_data_iterator = iter(valid_dataloader)
    else:
        valid_data_iterator = None

    if test_dataloader is not None:
        if loop:
            test_data_iterator = cycle(test_dataloader)
        else:
            test_data_iterator = iter(test_dataloader)
    else:
        test_data_iterator = None

    return train_data_iterator, valid_data_iterator, test_data_iterator


def compile_helper():
    """Compile helper function at runtime. Make sure this
    is invoked on a single process."""
    import os
    import subprocess

    path = os.path.abspath(os.path.dirname(__file__))
    ret = subprocess.run(["make", "-C", path])
    if ret.returncode != 0:
        print("Making C++ dataset helpers module failed, exiting.")
        import sys

        sys.exit(1)