File size: 6,992 Bytes
d90b3a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# Copyright (c) 2024, EleutherAI
# This file is based on code by the authors denoted below and has been modified from its original version.
#
# Copyright (c) 2024, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
import torch.nn as nn
import enum
from ..fused_kernels import load_fused_kernels


class ScaledUpperTriangMaskedSoftmax(torch.autograd.Function):
    """
    Fused operation which performs following three operations in sequence
    1. Scale the tensor.
    2. Apply upper triangular mask (typically used in gpt models).
    3. Perform softmax.
    """

    @staticmethod
    def forward(ctx, inputs, scale):
        import scaled_upper_triang_masked_softmax_cuda

        scale_t = torch.tensor([scale])

        softmax_results = scaled_upper_triang_masked_softmax_cuda.forward(
            inputs, scale_t[0]
        )
        ctx.save_for_backward(softmax_results, scale_t)
        return softmax_results

    @staticmethod
    def backward(ctx, output_grads):
        import scaled_upper_triang_masked_softmax_cuda

        softmax_results, scale_t = ctx.saved_tensors

        input_grads = scaled_upper_triang_masked_softmax_cuda.backward(
            output_grads, softmax_results, scale_t[0]
        )
        return input_grads, None


class ScaledMaskedSoftmax(torch.autograd.Function):
    """
    Fused operation which performs following three operations in sequence
    1. Scale the tensor.
    2. Apply the mask.
    3. Perform softmax.
    """

    @staticmethod
    def forward(ctx, inputs, mask, scale):
        import scaled_masked_softmax_cuda

        scale_t = torch.tensor([scale])

        softmax_results = scaled_masked_softmax_cuda.forward(inputs, mask, scale_t[0])
        ctx.save_for_backward(softmax_results, scale_t)
        return softmax_results

    @staticmethod
    def backward(ctx, output_grads):
        import scaled_masked_softmax_cuda

        softmax_results, scale_t = ctx.saved_tensors

        input_grads = scaled_masked_softmax_cuda.backward(
            output_grads, softmax_results, scale_t[0]
        )
        return input_grads, None, None


class SoftmaxFusionTypes(enum.Enum):
    upper_triang = 1  # causal mask
    general = 2  # general mask
    none = 3  # no fusion


class FusedScaleMaskSoftmax(nn.Module):
    """
    fused operation: scaling + mask + softmax
    Arguments:
        input_in_fp16: flag to indicate if input in fp16 data format.
        input_in_bf16: flag to indicate if input in bf16 data format.
        fusion_type: type of fusion to perform, should be either upper_triang, general or none. None will perform a regular torch softmax.
        mask_func: mask function to be applied.
        softmax_in_fp32: if true, softmax in performed at fp32 precision.
        scale: scaling factor used in input tensor scaling.

    """

    def __init__(
        self,
        input_in_fp16,
        input_in_bf16,
        fusion_type,
        mask_func,
        softmax_in_fp32,
        scale,
    ):
        super().__init__()
        self.input_in_fp16 = input_in_fp16
        self.input_in_bf16 = input_in_bf16
        self.input_in_float16 = self.input_in_fp16 or self.input_in_bf16

        assert fusion_type in [
            SoftmaxFusionTypes.upper_triang,
            SoftmaxFusionTypes.general,
            SoftmaxFusionTypes.none,
        ], f"Invalid fusion type {fusion_type}"

        if fusion_type != SoftmaxFusionTypes.none:
            load_fused_kernels()  # check fused kernels are installed

        self.upper_triang_mask_fusion = fusion_type == SoftmaxFusionTypes.upper_triang
        self.general_mask_fusion = fusion_type == SoftmaxFusionTypes.general
        self.fusion = fusion_type != SoftmaxFusionTypes.none

        self.mask_func = mask_func
        self.softmax_in_fp32 = softmax_in_fp32
        self.scale = scale

        assert (
            self.scale is None or softmax_in_fp32
        ), "softmax should be in fp32 when scaled"

    def forward(self, input, mask):
        # [b, np, sq, sk]
        assert input.dim() == 4
        if self.is_kernel_available(mask, *input.size()):
            return self.forward_fused_softmax(input, mask)
        else:
            return self.forward_torch_softmax(input, mask)

    def is_kernel_available(self, mask, b, np, sq, sk):
        attn_batches = b * np

        if (
            self.fusion  # user wants to fuse
            and self.input_in_float16  # input must be fp16
            and mask is not None  # mask tensor must not be None
            and 16 < sk <= 2048  # sk must be 16 ~ 2048
            and sq % 4 == 0  # sq must be divisor of 4
            and attn_batches % 4 == 0  # np * b must be divisor of 4
        ):
            if 0 <= sk <= 2048:
                batch_per_block = self.get_batch_per_block(sq, sk, b, np)

                if self.upper_triang_mask_fusion:
                    if attn_batches % batch_per_block == 0:
                        return True
                else:
                    if sq % batch_per_block == 0:
                        return True
        return False

    def forward_fused_softmax(self, input, mask):
        b, np, sq, sk = input.size()
        scale = self.scale if self.scale is not None else 1.0
        if self.upper_triang_mask_fusion:
            assert sq == sk, "causal mask is only for self attention"

            # input is 3D tensor (attn_batches, sq, sk)
            input = input.view(-1, sq, sk)
            probs = ScaledUpperTriangMaskedSoftmax.apply(input, scale)
            return probs.view(b, np, sq, sk)
        else:
            # input is 4D tensor (b, np, sq, sk)
            return ScaledMaskedSoftmax.apply(input, mask, scale)

    def forward_torch_softmax(self, input, mask):
        if self.input_in_float16 and self.softmax_in_fp32:
            input = input.float()

        if self.scale is not None:
            input = input * self.scale
        mask_output = self.mask_func(input, mask) if mask is not None else input
        probs = torch.nn.Softmax(dim=-1)(mask_output)

        if self.input_in_float16 and self.softmax_in_fp32:
            if self.input_in_fp16:
                probs = probs.half()
            else:
                probs = probs.bfloat16()

        return probs

    @staticmethod
    def get_batch_per_block(sq, sk, b, np):
        import scaled_masked_softmax_cuda

        return scaled_masked_softmax_cuda.get_batch_per_block(sq, sk, b, np)