File size: 10,119 Bytes
d90b3a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# Copyright (c) 2024, EleutherAI
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
import math
from torch.nn.parameter import Parameter

from megatron import mpu
from megatron.model.positional_embeddings import SinusoidalPositionalEmbedding
from megatron.model.init_functions import get_init_methods


class Embedding(torch.nn.Module):
    """Language model embeddings.
    Arguments:
        hidden_size: hidden size
        vocab_size: vocabulary size
        max_sequence_length: maximum size of sequence. This
                             is used for positional embedding
        embedding_dropout_prob: dropout probability for embeddings
        init_method: weight initialization method
        num_tokentypes: size of the token-type embeddings. 0 value
                        will ignore this embedding
    """

    def __init__(
        self,
        neox_args,
        hidden_size,
        vocab_size,
        max_sequence_length,
        embedding_dropout_prob,
        init_method,
        num_tokentypes=0,
        use_pos_emb=True,
    ):
        super(Embedding, self).__init__()

        self.hidden_size = hidden_size
        self.init_method = init_method
        self.num_tokentypes = num_tokentypes

        self.sequence_parallel = (
            neox_args.sequence_parallel
        )  # if we are using sequence parallelism, then we'll want to scatter our inputs across the seqlen dim across TP ranks

        self.use_mup = neox_args.use_mup
        self.mup_embedding_mult = neox_args.mup_embedding_mult
        self.mup_rp_embedding_mult = neox_args.mup_rp_embedding_mult

        # Word embeddings (parallel).
        self.word_embeddings = mpu.VocabParallelEmbedding(
            neox_args=neox_args,
            num_embeddings=vocab_size,
            embedding_dim=self.hidden_size,
            init_method=self.init_method,
        )
        self._word_embeddings_key = "word_embeddings"

        if neox_args.use_bnb_optimizer:
            try:
                import bitsandbytes as bnb

                self.embedding_module = bnb.nn.StableEmbedding
            except ModuleNotFoundError:
                print(
                    "Please install bitsandbytes following https://github.com/facebookresearch/bitsandbytes."
                )
                raise Exception
        else:
            self.embedding_module = torch.nn.Embedding

        # Position embedding (serial).
        self.use_pos_emb = use_pos_emb
        if self.use_pos_emb:
            self.embedding_type = neox_args.pos_emb
            if self.embedding_type == "learned":
                self.position_embeddings = self.embedding_module(
                    max_sequence_length, self.hidden_size
                )
                self._position_embeddings_key = "position_embeddings"
                # Initialize the position embeddings.
                self.init_method(self.position_embeddings.weight)
            elif self.embedding_type == "sinusoidal":
                self.position_embeddings = SinusoidalPositionalEmbedding(
                    self.hidden_size
                )

        # Token type embedding.
        # Add this as an optional field that can be added through
        # method call so we can load a pretrain model without
        # token types and add them as needed.
        self._tokentype_embeddings_key = "tokentype_embeddings"
        if self.num_tokentypes > 0:
            self.tokentype_embeddings = self.embedding_module(
                self.num_tokentypes, self.hidden_size
            )
            # Initialize the token-type embeddings.
            self.init_method(self.tokentype_embeddings.weight)
        else:
            self.tokentype_embeddings = None

        # Embeddings dropout
        self.embedding_dropout = torch.nn.Dropout(embedding_dropout_prob)
        self.opt_pos_emb_offset = neox_args.opt_pos_emb_offset

        # For ticking position ids forward
        self.layer_past = None

    def add_tokentype_embeddings(self, num_tokentypes):
        """Add token-type embedding. This function is provided so we can add
        token-type embeddings in case the pretrained model does not have it.
        This allows us to load the model normally and then add this embedding.
        """
        if self.tokentype_embeddings is not None:
            raise Exception("tokentype embeddings is already initialized")
        if torch.distributed.get_rank() == 0:
            print(
                "adding embedding for {} tokentypes".format(num_tokentypes), flush=True
            )
        self.num_tokentypes = num_tokentypes
        self.tokentype_embeddings = self.embedding_module(
            num_tokentypes, self.hidden_size
        )
        # Initialize the token-type embeddings.
        self.init_method(self.tokentype_embeddings.weight)

    def forward(self, input_ids, position_ids, tokentype_ids=None):
        # Embeddings.
        words_embeddings = self.word_embeddings(input_ids)
        if self.use_pos_emb and self.embedding_type in ["learned", "sinusoidal"]:
            if self.opt_pos_emb_offset:
                if self.layer_past is not None:
                    position_ids = position_ids + self.layer_past + 1
                self.layer_past = position_ids[:, -1]
                # OPT always adds 2 for some reason, according to the HF implementation
                position_ids = position_ids + self.opt_pos_emb_offset
            position_embeddings = self.position_embeddings(position_ids)
            position_embeddings.mul_(self.mup_rp_embedding_mult)
            embeddings = words_embeddings + position_embeddings
        else:
            embeddings = words_embeddings
        if tokentype_ids is not None:
            assert self.tokentype_embeddings is not None
            embeddings = embeddings + self.tokentype_embeddings(tokentype_ids)
        else:
            assert self.tokentype_embeddings is None

        # Dropout.
        embeddings = self.embedding_dropout(embeddings)

        if self.use_mup:
            with torch.no_grad():
                embeddings.mul_(self.mup_embedding_mult)

        if self.sequence_parallel:
            # TODO: megatron-lm does dropout using the scattered embs. This would save a tiny bit of time, perhaps?
            # Not a priority since we don't often use dropout
            embeddings = mpu.scatter_to_sequence_parallel_region(embeddings)

        return embeddings


class EmbeddingPipe(Embedding):
    """Extends Embedding to forward attention_mask through the pipeline."""

    @property
    def word_embeddings_weight(self):
        """Easy accessory for the pipeline engine to tie embeddings across stages."""
        return self.word_embeddings.weight

    def forward(self, args):
        assert (
            len(args) == 3
        ), f"Expected 3 arguments (input_ids, position_ids, attention_mask), but got {len(args)}."

        input_ids = args[0]
        position_ids = args[1]
        attention_mask = args[2]
        embeddings = super().forward(input_ids, position_ids)
        return embeddings, attention_mask


class SoftEmbedding(torch.nn.Module):
    def __init__(
        self,
        neox_args,
        wte,
        n_tokens: int = 10,
        init_range: float = 0.5,
        init_string: str = "",
    ):
        super(SoftEmbedding, self).__init__()
        self.n_tokens = n_tokens
        self.neox_args = neox_args
        self.init_range = init_range
        self.init_string = init_string
        self.soft_embedding_weight = torch.nn.parameter.Parameter(
            self.initialize_embedding(wte)
        )

    def initialize_embedding(self):
        if self.init_string:
            embeds = torch.LongTensor(
                self.neox_args.tokenizer.tokenize(self.init_string)
            ).to(self.embedding_module.weight.device)
            embeds = self.embedding_module(embeds)
            if embeds.shape[0] >= self.n_tokens:
                embeds = embeds[: self.n_tokens, :]  # slice
            else:
                embeds = embeds.repeat(math.ceil(self.n_tokens / embeds.shape[0]), 1)[
                    : self.n_tokens, :
                ]  # pad up to n_tokens
            return embeds
        return torch.Tensor(n_tokens, neox_args.hidden_size).uniform_(
            -self.random_range, self.random_range
        )

    def forward(self, args: tuple):
        in_inference = len(args) == 3  # embeddings, layer_past, attention_mask
        in_train = len(args) == 2  # embeddings, attention_mask
        if in_train:
            embedding, attention_mask = args
        else:
            embedding, layer_past, attention_mask = args
        soft_embedding = self.soft_embedding_weight.repeat(
            embedding.shape[0], 1, 1
        )  # repeat batch_size times
        if in_train:
            # append soft embedding at the beginning in training
            embedding = torch.cat((soft_embedding, embedding), dim=1)
            embedding = embedding[:, : self.neox_args.seq_length, ...]
            return embedding, attention_mask
        else:
            if not (exists(layer_past) and layer_past.numel() > 0):
                # if in inference, on the first forward pass, we want to do the same as in training (append soft embedding)
                embedding = torch.cat((soft_embedding, embedding), dim=1)
                embedding = embedding[:, : self.neox_args.seq_length, ...]
            # otherwise, we're in incremental mode, and just want to forward the single embedding (since the soft prompt has already been cached)
            return embedding, layer_past, attention_mask