File size: 11,135 Bytes
d90b3a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
# Copyright (c) 2024, EleutherAI
# This file is based on code by the authors denoted below and has been modified from its original version.
#
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Model and data parallel groups."""
import torch
from .utils import ensure_divisibility
# Model parallel group that the current rank belongs to.
_MODEL_PARALLEL_GROUP = None
# Data parallel group that the current rank belongs to.
_DATA_PARALLEL_GROUP = None
# Pipeline parallel group that the current rank belongs to.
_PIPE_PARALLEL_GROUP = None
# A group used to sync during the IO process. Usually this is data_parallel_group(),
# but with pipeline parallelism it must also involve the last stage (which is not in the
# DP group of rank 0)
_IO_PARALLEL_GROUP = None
# These values enable us to change the mpu sizes on the fly.
_MPU_WORLD_SIZE = None
_MPU_RANK = None
# Used to query 3D topology
_MPU_TOPOLOGY = None
# Get fp32_allreduce flag
_FP32_ALLREDUCE = None
def is_unitialized():
"""Useful for code segments that may be accessed with or without mpu initialization"""
return _DATA_PARALLEL_GROUP is None
def initialize_model_parallel(model_parallel_size, topology=None, fp32_allreduce=False):
"""
Initialize model data parallel groups.
Arguments:
model_parallel_size: number of GPUs used to parallelize model.
Let's say we have a total of 8 GPUs denoted by g0 ... g7 and we
use 2 GPUs to parallelize the model. The present function will
create 4 model parallel groups and 2 data parallel groups as:
4 model parallel groups:
[g0, g1], [g2, g3], [g4, g5], [g6, g7]
2 data parallel groups:
[g0, g2, g4, g6], [g1, g3, g5, g7]
Note that for efficiency, the caller should make sure adjacent ranks
are on the same DGX box. For example if we are using 2 DGX-1 boxes
with a total of 16 GPUs, rank 0 to 7 belong to the first box and
ranks 8 to 15 belong to the second box.
"""
if torch.distributed.get_rank() == 0:
print("> initializing model parallel with size {}".format(model_parallel_size))
# Get world size and rank. Ensure some consistencies.
assert torch.distributed.is_initialized()
world_size = torch.distributed.get_world_size()
if world_size < model_parallel_size:
raise ValueError("world size cannot be smaller than model parallel size")
ensure_divisibility(world_size, model_parallel_size)
rank = torch.distributed.get_rank()
global _MPU_TOPOLOGY
if topology:
_MPU_TOPOLOGY = topology
# Build the data parallel groups.
global _DATA_PARALLEL_GROUP
assert _DATA_PARALLEL_GROUP is None, "data parallel group is already initialized"
if topology:
for dp_group in topology.get_axis_comm_lists("data"):
group = torch.distributed.new_group(ranks=dp_group)
if rank == 0:
print(f"MPU DP:", dp_group)
if rank in dp_group:
_DATA_PARALLEL_GROUP = group
else:
for i in range(model_parallel_size):
ranks = range(i, world_size, model_parallel_size)
group = torch.distributed.new_group(ranks)
if i == (rank % model_parallel_size):
_DATA_PARALLEL_GROUP = group
# Build pipeline parallel group
if topology is not None:
global _PIPE_PARALLEL_GROUP
for pp_group in topology.get_axis_comm_lists("pipe"):
group = torch.distributed.new_group(ranks=pp_group)
if rank == 0:
print(f"MPU PP:", pp_group)
if rank in pp_group:
_PIPE_PARALLEL_GROUP = group
# Build IO group
global _IO_PARALLEL_GROUP
if topology and topology.get_dim("pipe") > 1:
io_stages = [0, topology.get_dim("pipe") - 1]
io_group = []
for stage in io_stages:
io_group.extend(topology.filter_match(pipe=stage, model=0))
if rank == 0:
print(f"MPU IO:", io_group)
group = torch.distributed.new_group(ranks=io_group)
if rank in io_group:
_IO_PARALLEL_GROUP = group
else:
_IO_PARALLEL_GROUP = get_data_parallel_group()
# Build the model parallel groups.
global _MODEL_PARALLEL_GROUP
assert _MODEL_PARALLEL_GROUP is None, "model parallel group is already initialized"
if topology:
# Short circuit case without model parallelism.
# TODO: it would be nice to avoid this branching case?
if model_parallel_size == 1:
for group_rank in range(world_size):
group = torch.distributed.new_group(ranks=[group_rank])
if rank == 0:
print(f"MPU MP:", [group_rank])
if rank == group_rank:
_MODEL_PARALLEL_GROUP = group
return
for mp_group in topology.get_axis_comm_lists("model"):
group = torch.distributed.new_group(ranks=mp_group)
if rank == 0:
print(f"MPU MP:", mp_group)
if rank in mp_group:
_MODEL_PARALLEL_GROUP = group
else:
for i in range(world_size // model_parallel_size):
ranks = range(i * model_parallel_size, (i + 1) * model_parallel_size)
group = torch.distributed.new_group(ranks)
if i == (rank // model_parallel_size):
_MODEL_PARALLEL_GROUP = group
global _FP32_ALLREDUCE
assert _FP32_ALLREDUCE is None, "fp32_allreduce is already initialized"
_FP32_ALLREDUCE = fp32_allreduce
def model_parallel_is_initialized():
"""Check if model and data parallel groups are initialized."""
if _MODEL_PARALLEL_GROUP is None or _DATA_PARALLEL_GROUP is None:
return False
return True
def get_model_parallel_group():
"""Get the model parallel group the caller rank belongs to."""
assert _MODEL_PARALLEL_GROUP is not None, "model parallel group is not initialized"
return _MODEL_PARALLEL_GROUP
def get_data_parallel_group():
"""Get the data parallel group the caller rank belongs to."""
assert _DATA_PARALLEL_GROUP is not None, "data parallel group is not initialized"
return _DATA_PARALLEL_GROUP
def get_io_parallel_group():
"""Get the IO parallel group the caller rank belongs to."""
assert _IO_PARALLEL_GROUP is not None, "IO parallel group is not initialized"
return _IO_PARALLEL_GROUP
def set_model_parallel_world_size(world_size):
"""Set the model parallel size"""
global _MPU_WORLD_SIZE
_MPU_WORLD_SIZE = world_size
def get_model_parallel_world_size():
"""Return world size for the model parallel group."""
global _MPU_WORLD_SIZE
if _MPU_WORLD_SIZE is not None:
return _MPU_WORLD_SIZE
return torch.distributed.get_world_size(group=get_model_parallel_group())
def set_model_parallel_rank(rank):
"""Set model parallel rank."""
global _MPU_RANK
_MPU_RANK = rank
def get_model_parallel_rank():
"""Return my rank for the model parallel group."""
global _MPU_RANK
if _MPU_RANK is not None:
return _MPU_RANK
return torch.distributed.get_rank(group=get_model_parallel_group())
def get_model_parallel_src_rank():
"""Calculate the global rank corresponding to a local rank zero
in the model parallel group."""
global_rank = torch.distributed.get_rank()
local_world_size = get_model_parallel_world_size()
return (global_rank // local_world_size) * local_world_size
def get_data_parallel_src_rank():
"""Calculate the global rank corresponding to a local rank zero
in the data parallel group."""
global_rank = torch.distributed.get_rank()
topo = get_topology()
if topo is None:
# we are just using model parallel
return global_rank % get_model_parallel_world_size()
else:
# We are using pipeline parallel
d = topo.get_axis_comm_lists("data")
for l in d:
if global_rank in l:
return l[0]
def get_data_parallel_world_size():
"""Return world size for the data parallel group."""
return torch.distributed.get_world_size(group=get_data_parallel_group())
def get_data_parallel_rank():
"""Return my rank for the data parallel group."""
return torch.distributed.get_rank(group=get_data_parallel_group())
def get_topology():
return _MPU_TOPOLOGY
def get_pipe_parallel_group():
"""Get the pipe parallel group the caller rank belongs to."""
assert _PIPE_PARALLEL_GROUP is not None, "data parallel group is not initialized"
return _PIPE_PARALLEL_GROUP
def get_pipe_parallel_rank():
"""Return my rank for the pipe parallel group."""
return torch.distributed.get_rank(group=get_pipe_parallel_group())
def get_pipe_parallel_world_size():
"""Return world size for the pipe parallel group."""
return torch.distributed.get_world_size(group=get_pipe_parallel_group())
def set_tensor_model_parallel_world_size(world_size):
"""Set the tensor model parallel size"""
set_model_parallel_world_size(world_size)
def get_tensor_model_parallel_group():
"""Get the tensor model parallel group the caller rank belongs to."""
return get_model_parallel_group()
def get_tensor_model_parallel_src_rank():
"""Calculate the global rank corresponding to the first local rank
in the tensor model parallel group."""
return get_model_parallel_rank()
# Needed for MOE. True tensor parallelism todo.
def get_tensor_model_parallel_world_size():
"""Return world size for the tensor model parallel group."""
return get_model_parallel_world_size()
def set_tensor_model_parallel_rank(rank):
"""Set tensor model parallel rank."""
set_model_parallel_rank(rank)
def get_tensor_model_parallel_rank():
"""Return my rank for the tensor model parallel group."""
return get_model_parallel_rank()
def destroy_model_parallel():
"""Set the groups to none."""
global _MODEL_PARALLEL_GROUP
_MODEL_PARALLEL_GROUP = None
global _DATA_PARALLEL_GROUP
_DATA_PARALLEL_GROUP = None
global _PIPE_PARALLEL_GROUP
_PIPE_PARALLEL_GROUP = None
global _IO_PARALLEL_GROUP
_IO_PARALLEL_GROUP = None
global _MPU_WORLD_SIZE
global _MPU_RANK
_MPU_WORLD_SIZE = None
_MPU_RANK = None
global _MPU_TOPOLOGY
_MPU_TOPOLOGY = None
global _FP32_ALLREDUCE
_FP32_ALLREDUCE = None
def get_fp32_allreduce():
"""Get the fp32 allreduce flag"""
assert _FP32_ALLREDUCE is not None, "fp32_allreduce is not Initialized"
return _FP32_ALLREDUCE
|