File size: 29,649 Bytes
d90b3a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
# Copyright (c) 2024, EleutherAI
# This file is based on code by the authors denoted below and has been modified from its original version.
#
# Copyright (c) 2024, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


# Parts of the code here are adapted from PyTorch
# repo: https://github.com/pytorch/pytorch


import math

import torch
import torch.nn.functional as F
import torch.nn.init as init
from torch.nn.parameter import Parameter

from .initialize import get_model_parallel_rank
from .initialize import get_model_parallel_world_size
from .mappings import copy_to_model_parallel_region
from .mappings import gather_from_model_parallel_region
from .mappings import reduce_from_model_parallel_region
from .mappings import scatter_to_model_parallel_region
from .mappings import reduce_scatter_to_sequence_parallel_region
from .mappings import gather_from_sequence_parallel_region
from .random import get_cuda_rng_tracker
from .utils import divide
from .utils import VocabUtility
from functools import partial


def _initialize_affine_weight_gpu(weight, init_method, partition_dim, stride=1):
    """Initialize affine weight for model parallel on GPU."""

    weight.model_parallel = True
    weight.partition_dim = partition_dim
    weight.partition_stride = stride

    with get_cuda_rng_tracker().fork():
        init_method(weight)


def _initialize_affine_weight_cpu(
    neox_args,
    weight,
    output_size,
    input_size,
    per_partition_size,
    partition_dim,
    init_method,
    stride=1,
    return_master_weight=False,
):
    """Initialize affine weight for model parallel.

    Build the master weight on all processes and scatter
    the relevant chunk."""

    weight.model_parallel = True
    weight.partition_dim = partition_dim
    weight.partition_stride = stride

    # Initialize master weight
    master_weight = torch.empty(
        output_size, input_size, dtype=torch.float, requires_grad=False
    )
    init_method(master_weight)
    master_weight = master_weight.to(dtype=neox_args.params_dtype)

    # Split and copy
    per_partition_per_stride_size = divide(per_partition_size, stride)
    weight_list = torch.split(
        master_weight, per_partition_per_stride_size, dim=partition_dim
    )
    rank = get_model_parallel_rank()
    world_size = get_model_parallel_world_size()
    my_weight_list = weight_list[rank::world_size]

    with torch.no_grad():
        torch.cat(my_weight_list, dim=partition_dim, out=weight)
    if return_master_weight:
        return master_weight
    return None


class VocabParallelEmbedding(torch.nn.Module):
    """Embedding parallelized in the vocabulary dimension.

    This is mainly adapted from torch.nn.Embedding and all the default
    values are kept.
    Arguments:
        num_embeddings: vocabulary size.
        embedding_dim: size of hidden state.
        init_method: method to initialize weights.
    """

    def __init__(
        self, neox_args, num_embeddings, embedding_dim, init_method=init.xavier_normal_
    ):
        super(VocabParallelEmbedding, self).__init__()
        # Keep the input dimensions.
        self.num_embeddings = num_embeddings
        self.embedding_dim = embedding_dim
        # Set the detauls for compatibility.
        self.padding_idx = None
        self.max_norm = None
        self.norm_type = 2.0
        self.scale_grad_by_freq = False
        self.sparse = False
        self._weight = None
        self.model_parallel_size = get_model_parallel_world_size()
        # Divide the weight matrix along the vocabulary dimension.
        (
            self.vocab_start_index,
            self.vocab_end_index,
        ) = VocabUtility.vocab_range_from_global_vocab_size(
            self.num_embeddings, get_model_parallel_rank(), self.model_parallel_size
        )
        self.num_embeddings_per_partition = (
            self.vocab_end_index - self.vocab_start_index
        )
        self.init_method = init_method

        # Allocate weights and initialize.
        if neox_args.use_cpu_initialization:
            self.weight = Parameter(
                torch.empty(
                    self.num_embeddings_per_partition,
                    self.embedding_dim,
                    dtype=neox_args.params_dtype,
                )
            )
            _initialize_affine_weight_cpu(
                neox_args,
                self.weight,
                self.num_embeddings,
                self.embedding_dim,
                self.num_embeddings_per_partition,
                0,
                init_method,
            )
        else:
            self.weight = Parameter(
                torch.empty(
                    self.num_embeddings_per_partition,
                    self.embedding_dim,
                    device=torch.cuda.current_device(),
                    dtype=neox_args.params_dtype,
                )
            )
            _initialize_affine_weight_gpu(
                self.weight, init_method, partition_dim=0, stride=1
            )

    def mup_reinitialize_weights(self, neox_args):
        if neox_args.use_cpu_initialization:
            _initialize_affine_weight_cpu(
                neox_args,
                self.weight,
                self.num_embeddings,
                self.embedding_dim,
                self.num_embeddings_per_partition,
                0,
                partial(self.init_method, use_mup=True),
            )
        else:
            _initialize_affine_weight_gpu(
                self.weight,
                partial(self.init_method, use_mup=True),
                partition_dim=0,
                stride=1,
            )

    def forward(self, input_):
        if self.model_parallel_size > 1:
            # Build the mask.
            input_mask = (input_ < self.vocab_start_index) | (
                input_ >= self.vocab_end_index
            )
            # Mask the input.
            masked_input = input_.clone() - self.vocab_start_index
            masked_input[input_mask] = 0
        else:
            masked_input = input_
            # Get the embeddings.
        output_parallel = F.embedding(
            masked_input,
            self.weight,
            self.padding_idx,
            self.max_norm,
            self.norm_type,
            self.scale_grad_by_freq,
            self.sparse,
        )
        # Mask the output embedding.
        if self.model_parallel_size > 1:
            output_parallel[input_mask, :] = 0.0
        # Reduce across all the model parallel GPUs.
        output = reduce_from_model_parallel_region(output_parallel)
        return output


class ParallelRelativePositionBias(torch.nn.Module):
    """T5 Relative Position Bias parallelized in the heads dimension

    Based on https://github.com/lucidrains/x-transformers/blob/6b93c21be0d0a679da6f7b9621d9bb638ab18428/x_transformers/x_transformers.py#L106 (14.12.2021)
    and adapted for megatron's model parallelism

    Arguments:
        scale: scaling factor for the bias
        causal: flag for causal/non-causal language modelling.
        num_buckets: number of rp buckets.
        max_distance: max distance in sequence dim for each bucket.
        heads: number of attention heads (total)
    """

    def __init__(
        self,
        neox_args,
        scale,
        causal=True,
        num_buckets=32,
        max_distance=128,
        heads=8,
        init_method=init.xavier_normal_,
    ):
        super().__init__()
        self.scale = scale
        self.causal = causal
        self.num_buckets = num_buckets
        self.max_distance = max_distance
        self.heads = heads

        # Set the defaults for compatibility.
        self.padding_idx = None
        self.max_norm = None
        self.norm_type = 2.0
        self.scale_grad_by_freq = False
        self.sparse = False
        self._weight = None
        self.model_parallel_size = get_model_parallel_world_size()
        self.model_parallel_rank = get_model_parallel_rank()

        # Divide the weight matrix along the heads dimension.
        self.head_start_index, self.head_end_index = self.get_heads_range(
            self.heads, self.model_parallel_rank, self.model_parallel_size
        )
        self.num_heads_per_partition = self.head_end_index - self.head_start_index
        self.init_method = init_method

        # Allocate weights and initialize.
        if neox_args.use_cpu_initialization:
            self.weight = Parameter(
                torch.empty(
                    self.num_buckets,
                    self.num_heads_per_partition,
                    dtype=neox_args.params_dtype,
                )
            )
            _initialize_affine_weight_cpu(
                neox_args,
                self.weight,
                self.num_buckets,
                self.heads,
                self.num_heads_per_partition,
                partition_dim=1,
                init_method=init_method,
            )
        else:
            self.weight = Parameter(
                torch.empty(
                    self.num_buckets,
                    self.num_heads_per_partition,
                    device=torch.cuda.current_device(),
                    dtype=neox_args.params_dtype,
                )
            )
            _initialize_affine_weight_gpu(
                self.weight, init_method, partition_dim=1, stride=1
            )
        self._q_len_cached = None
        self._k_len_cached = None
        self._rel_pos_bucket_cached = None

    def mup_reinitialize_weights(self, neox_args):
        if self.use_cpu_initialization:
            _initialize_affine_weight_cpu(
                neox_args,
                self.weight,
                self.num_buckets,
                self.heads,
                self.num_heads_per_partition,
                partition_dim=1,
                init_method=partial(self.init_method, use_mup=True),
            )
        else:
            _initialize_affine_weight_gpu(
                self.weight,
                partial(self.init_method, use_mup=True),
                partition_dim=1,
                stride=1,
            )

    @staticmethod
    def get_heads_range(global_n_heads, rank, world_size):
        per_partition_n_heads = divide(global_n_heads, world_size)
        index_f = rank * per_partition_n_heads
        index_l = index_f + per_partition_n_heads
        return index_f, index_l

    def _relative_position_bucket(
        self, relative_position, num_buckets=32, max_distance=128
    ):
        ret = 0
        n = -relative_position
        if not self.causal:
            num_buckets //= 2
            ret += (n < 0).long() * num_buckets
            n = torch.abs(n)
        else:
            n = torch.max(n, torch.zeros_like(n))

        max_exact = num_buckets // 2
        is_small = n < max_exact

        val_if_large = (
            max_exact
            + (
                torch.log(n.float() / max_exact)
                / math.log(max_distance / max_exact)
                * (num_buckets - max_exact)
            ).long()
        )
        val_if_large = torch.min(
            val_if_large, torch.full_like(val_if_large, num_buckets - 1)
        )

        ret += torch.where(is_small, n, val_if_large)
        self._rel_pos_bucket_cached = ret
        return self._rel_pos_bucket_cached

    def forward(self, q_len, k_len):
        if self._q_len_cached != q_len or self._k_len_cached != k_len:
            # cache bucket if first step seq len stays constant
            self._q_len_cached, self._k_len_cached = q_len, k_len
            q_pos = torch.arange(
                q_len, dtype=torch.long, device=torch.cuda.current_device()
            )
            k_pos = torch.arange(
                k_len, dtype=torch.long, device=torch.cuda.current_device()
            )
            rel_pos = k_pos[None, :] - q_pos[:, None]
            rp_bucket = self._relative_position_bucket(
                rel_pos, num_buckets=self.num_buckets, max_distance=self.max_distance
            )
        else:
            rp_bucket = self._rel_pos_bucket_cached
        values = F.embedding(
            rp_bucket,
            self.weight,
            self.padding_idx,
            self.max_norm,
            self.norm_type,
            self.scale_grad_by_freq,
            self.sparse,
        )
        bias = values.movedim(2, 0).unsqueeze(0)
        return bias * self.scale


class ColumnParallelLinear(torch.nn.Module):
    """Linear layer with column parallelism.

    The linear layer is defined as Y = XA + b. A is parallelized along
    its second dimension as A = [A_1, ..., A_p].

    Arguments:
        input_size: first dimension of matrix A.
        output_size: second dimension of matrix A.
        bias: If true, add bias
        gather_output: If true, call all-gather on output and make Y available
                       to all GPUs, otherwise, every GPU will have its output
                       which is Y_i = XA_i
        init_method: method to initialize weights. Note that bias is always set
                     to zero.
        stride: For the strided linear layers.
        keep_master_weight_for_test: This was added for testing and should be
                                     set to False. It returns the master weights
                                     used for initialization.
        skip_bias_add: This was added to enable performance optimations where bias
                       can be fused with other elementwise operations. we skip
                       adding bias but instead return it.
    """

    def __init__(
        self,
        neox_args,
        input_size,
        output_size,
        bias=True,
        gather_output=True,
        init_method=init.xavier_normal_,
        stride=1,
        keep_master_weight_for_test=False,
        skip_bias_add=False,
        MOE=False,
        MoE_mp_size=1,
        mup_rescale_parameters=False,
        seq_dim=0,  # Dimension which is the seq_len dimension. final ParallelLinear overrides this to be 1 ; otherwise, the default is used throughout.
    ):
        super(ColumnParallelLinear, self).__init__()

        # Keep input parameters
        self.input_size = input_size
        self.output_size = output_size
        self.gather_output = gather_output
        # Divide the weight matrix along the last dimension.
        world_size = MoE_mp_size if MOE else get_model_parallel_world_size()
        self.output_size_per_partition = divide(output_size, world_size)
        self.skip_bias_add = skip_bias_add

        self.sequence_parallel = neox_args.sequence_parallel
        self.seq_dim = seq_dim

        self.init_method = init_method
        self.stride = stride
        self.mup_rescale_parameters = mup_rescale_parameters
        self.use_mup = neox_args.use_mup

        # Parameters.
        # Note: torch.nn.functional.linear performs XA^T + b and as a result
        # we allocate the transpose.
        # Initialize weight.
        if neox_args.use_cpu_initialization:
            self.weight = Parameter(
                torch.empty(
                    self.output_size_per_partition,
                    self.input_size,
                    dtype=neox_args.params_dtype,
                )
            )
            self.master_weight = _initialize_affine_weight_cpu(
                neox_args,
                self.weight,
                self.output_size,
                self.input_size,
                self.output_size_per_partition,
                0,
                init_method,
                stride=stride,
                return_master_weight=keep_master_weight_for_test,
            )
        else:
            self.weight = Parameter(
                torch.empty(
                    self.output_size_per_partition,
                    self.input_size,
                    device=torch.cuda.current_device(),
                    dtype=neox_args.params_dtype,
                )
            )
            _initialize_affine_weight_gpu(
                self.weight, init_method, partition_dim=0, stride=stride
            )

        if bias:
            if neox_args.use_cpu_initialization:
                self.bias = Parameter(
                    torch.empty(
                        self.output_size_per_partition, dtype=neox_args.params_dtype
                    )
                )
            else:
                self.bias = Parameter(
                    torch.empty(
                        self.output_size_per_partition,
                        device=torch.cuda.current_device(),
                        dtype=neox_args.params_dtype,
                    )
                )
            self.bias.model_parallel = True
            self.bias.partition_dim = 0
            self.bias.stride = stride
            # Always initialize bias to zero.
            with torch.no_grad():
                self.bias.zero_()
        else:
            self.register_parameter("bias", None)

    # Copied from Mup
    def width_mult(self):
        assert hasattr(self.weight, "infshape"), (
            "Please call set_base_shapes(...). If using torch.nn.DataParallel, "
            "switch to distributed training with "
            "torch.nn.parallel.DistributedDataParallel instead"
        )
        return self.weight.infshape.width_mult()

    # Copied from Mup
    def _rescale_parameters(self):
        """Rescale parameters to convert SP initialization to μP initialization.
        Warning: This method is NOT idempotent and should be called only once
        unless you know what you are doing.
        """
        if hasattr(self, "_has_rescaled_params") and self._has_rescaled_params:
            raise RuntimeError(
                "`_rescale_parameters` has been called once before already. "
                "Unless you know what you are doing, usually you should not be calling `_rescale_parameters` more than once.\n"
                "If you called `set_base_shapes` on a model loaded from a checkpoint, "
                "or just want to re-set the base shapes of an existing model, "
                "make sure to set the flag `rescale_params=False`.\n"
                "To bypass this error and *still rescale parameters*, set `self._has_rescaled_params=False` before this call."
            )
        if self.bias is not None:
            self.bias.data *= self.width_mult() ** 0.5
        self.weight.data *= self.width_mult() ** 0.5
        self._has_rescaled_params = True

    def mup_reinitialize_weights(self, neox_args):
        if neox_args.use_cpu_initialization:
            self.master_weight = _initialize_affine_weight_cpu(
                neox_args,
                self.weight,
                self.output_size,
                self.input_size,
                self.output_size_per_partition,
                0,
                partial(self.init_method, use_mup=True),
                stride=self.stride,
                return_master_weight=keep_master_weight_for_test,
            )
        else:
            _initialize_affine_weight_gpu(
                self.weight,
                partial(self.init_method, use_mup=True),
                partition_dim=0,
                stride=self.stride,
            )

    def set_parallel_output(self, value: bool):
        assert isinstance(value, bool)
        self.gather_output = (
            not value
        )  # if gather_output is True, parallel output is False, so we set the opposite

    def forward(self, input_):
        if self.use_mup and self.mup_rescale_parameters:
            input_ /= self.width_mult()

        if self.sequence_parallel:
            input_parallel = input_
        else:
            # Set up backprop all-reduce.
            input_parallel = copy_to_model_parallel_region(input_)
        # Matrix multiply.

        if self.sequence_parallel:
            # do an AG in the fwd pass, RS in bwd pass.
            # gather / scatter portion happens across the sequence dim (self.seq_dim)--
            # almost always is [s, b, h] and so dim 0, but for lm_head ParallelLinear it is seq_dim=1 and [b, s, h]
            input_parallel = gather_from_sequence_parallel_region(
                input_parallel, seq_dim=self.seq_dim
            )

        bias = self.bias if not self.skip_bias_add else None
        output_parallel = F.linear(input_parallel, self.weight, bias)
        if self.gather_output:
            # All-gather across the partitions.
            assert (
                not self.sequence_parallel
            ), "sequence_parallel=True and gather_output=True are incompatible!"
            output = gather_from_model_parallel_region(output_parallel)
        else:
            output = output_parallel
        output_bias = self.bias if self.skip_bias_add else None
        return output, output_bias


class RowParallelLinear(torch.nn.Module):
    """Linear layer with row parallelism.

    The linear layer is defined as Y = XA + b. A is parallelized along
    its first dimension and X along its second dimension as:
               -   -
              | A_1 |
              | .   |
          A = | .   |        X = [X_1, ..., X_p]
              | .   |
              | A_p |
               -   -
    Arguments:
        input_size: first dimension of matrix A.
        output_size: second dimension of matrix A.
        bias: If true, add bias. Note that bias is not parallelized.
        input_is_parallel: If true, we assume that the input is already
                           split across the GPUs and we do not split
                           again.
        init_method: method to initialize weights. Note that bias is always set
                     to zero.
        stride: For the strided linear layers.
        keep_master_weight_for_test: This was added for testing and should be
                                     set to False. It returns the master weights
                                     used for initialization.
        skip_bias_add: This was added to enable performance optimations where bias
                       can be fused with other elementwise operations. we skip
                       adding bias but instead return it.
    """

    def __init__(
        self,
        neox_args,
        input_size,
        output_size,
        bias=True,
        input_is_parallel=False,
        init_method=init.xavier_normal_,
        stride=1,
        keep_master_weight_for_test=False,
        skip_bias_add=False,
        MOE=False,
        MoE_mp_size=1,
        parallel_output=False,
        mup_rescale_parameters=False,
    ):
        super(RowParallelLinear, self).__init__()

        # Keep input parameters
        self.input_size = input_size
        self.output_size = output_size
        self.input_is_parallel = input_is_parallel
        # Divide the weight matrix along the last dimension.
        world_size = MoE_mp_size if MOE else get_model_parallel_world_size()
        self.input_size_per_partition = divide(input_size, world_size)
        self.skip_bias_add = skip_bias_add
        self.parallel_output = parallel_output

        self.sequence_parallel = neox_args.sequence_parallel
        assert not (
            self.sequence_parallel and not self.input_is_parallel
        ), "Cannot have self.input_is_parallel=False and self.sequence_parallel=True."

        self.init_method = init_method
        self.stride = stride
        self.keep_master_weight_for_test = keep_master_weight_for_test
        self.mup_rescale_parameters = mup_rescale_parameters
        self.use_mup = neox_args.use_mup

        # Parameters.
        # Note: torch.nn.functional.linear performs XA^T + b and as a result
        # we allocate the transpose.
        # Initialize weight.
        if neox_args.use_cpu_initialization:
            self.weight = Parameter(
                torch.empty(
                    self.output_size,
                    self.input_size_per_partition,
                    dtype=neox_args.params_dtype,
                )
            )
            self.master_weight = _initialize_affine_weight_cpu(
                neox_args,
                self.weight,
                self.output_size,
                self.input_size,
                self.input_size_per_partition,
                1,
                init_method,
                stride=stride,
                return_master_weight=keep_master_weight_for_test,
            )
        else:
            self.weight = Parameter(
                torch.empty(
                    self.output_size,
                    self.input_size_per_partition,
                    device=torch.cuda.current_device(),
                    dtype=neox_args.params_dtype,
                )
            )
            _initialize_affine_weight_gpu(
                self.weight, init_method, partition_dim=1, stride=stride
            )
        if bias:
            if neox_args.use_cpu_initialization:
                self.bias = Parameter(
                    torch.empty(self.output_size, dtype=neox_args.params_dtype)
                )
            else:
                self.bias = Parameter(
                    torch.empty(
                        self.output_size,
                        device=torch.cuda.current_device(),
                        dtype=neox_args.params_dtype,
                    )
                )
            # Always initialize bias to zero.
            with torch.no_grad():
                self.bias.zero_()
        else:
            self.register_parameter("bias", None)

    # Copied from Mup
    def width_mult(self):
        assert hasattr(self.weight, "infshape"), (
            "Please call set_base_shapes(...). If using torch.nn.DataParallel, "
            "switch to distributed training with "
            "torch.nn.parallel.DistributedDataParallel instead"
        )
        return self.weight.infshape.width_mult()

    # Copied from Mup
    def _rescale_parameters(self):
        """Rescale parameters to convert SP initialization to μP initialization.
        Warning: This method is NOT idempotent and should be called only once
        unless you know what you are doing.
        """
        if hasattr(self, "_has_rescaled_params") and self._has_rescaled_params:
            raise RuntimeError(
                "`_rescale_parameters` has been called once before already. "
                "Unless you know what you are doing, usually you should not be calling `_rescale_parameters` more than once.\n"
                "If you called `set_base_shapes` on a model loaded from a checkpoint, "
                "or just want to re-set the base shapes of an existing model, "
                "make sure to set the flag `rescale_params=False`.\n"
                "To bypass this error and *still rescale parameters*, set `self._has_rescaled_params=False` before this call."
            )
        if self.bias is not None:
            self.bias.data *= self.width_mult() ** 0.5
        self.weight.data *= self.width_mult() ** 0.5
        self._has_rescaled_params = True

    def mup_reinitialize_weights(self, neox_args):
        if neox_args.use_cpu_initialization:
            self.master_weight = _initialize_affine_weight_cpu(
                neox_args,
                self.weight,
                self.output_size,
                self.input_size,
                self.input_size_per_partition,
                1,
                partial(self.init_method, use_mup=True),
                stride=self.stride,
                return_master_weight=self.keep_master_weight_for_test,
            )
        else:
            _initialize_affine_weight_gpu(
                self.weight,
                partial(self.init_method, use_mup=True),
                partition_dim=1,
                stride=self.stride,
            )

    def set_parallel_output(self, parallel_output: bool):
        assert isinstance(parallel_output, bool)
        self.parallel_output = parallel_output

    def forward(self, input_):
        if self.use_mup and self.mup_rescale_parameters:
            input_ /= self.width_mult()
        # Set up backprop all-reduce.
        if self.input_is_parallel:
            input_parallel = input_
        else:
            input_parallel = scatter_to_model_parallel_region(input_)
        # Matrix multiply.
        output_parallel = F.linear(input_parallel, self.weight)
        # All-reduce across all the partitions.
        if self.sequence_parallel and not self.parallel_output:
            # do an RS in the fwd pass, AG in bwd pass.
            # skip in the gpt-j parallel sublayer case (self.parallel_output=True)
            # (user responsible for calling reduce-scatter)
            output_ = reduce_scatter_to_sequence_parallel_region(output_parallel)
        elif not self.parallel_output:
            output_ = reduce_from_model_parallel_region(output_parallel)
        else:
            output_ = output_parallel
        if not self.skip_bias_add:
            output = output_ + self.bias if self.bias is not None else output_
            output_bias = None
        else:
            output = output_
            output_bias = self.bias
        return output, output_bias