File size: 9,513 Bytes
f6228f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Ultralytics YOLO 🚀, AGPL-3.0 license

from itertools import cycle

import cv2
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure

from ultralytics.solutions.solutions import BaseSolution  # Import a parent class


class Analytics(BaseSolution):
    """A class to create and update various types of charts (line, bar, pie, area) for visual analytics."""

    def __init__(self, **kwargs):
        """Initialize the Analytics class with various chart types."""
        super().__init__(**kwargs)

        self.type = self.CFG["analytics_type"]  # extract type of analytics
        self.x_label = "Classes" if self.type in {"bar", "pie"} else "Frame#"
        self.y_label = "Total Counts"

        # Predefined data
        self.bg_color = "#00F344"  # background color of frame
        self.fg_color = "#111E68"  # foreground color of frame
        self.title = "Ultralytics Solutions"  # window name
        self.max_points = 45  # maximum points to be drawn on window
        self.fontsize = 25  # text font size for display
        figsize = (19.2, 10.8)  # Set output image size 1920 * 1080
        self.color_cycle = cycle(["#DD00BA", "#042AFF", "#FF4447", "#7D24FF", "#BD00FF"])

        self.total_counts = 0  # count variable for storing total counts i.e for line
        self.clswise_count = {}  # dictionary for classwise counts

        # Ensure line and area chart
        if self.type in {"line", "area"}:
            self.lines = {}
            self.fig = Figure(facecolor=self.bg_color, figsize=figsize)
            self.canvas = FigureCanvas(self.fig)  # Set common axis properties
            self.ax = self.fig.add_subplot(111, facecolor=self.bg_color)
            if self.type == "line":
                (self.line,) = self.ax.plot([], [], color="cyan", linewidth=self.line_width)
        elif self.type in {"bar", "pie"}:
            # Initialize bar or pie plot
            self.fig, self.ax = plt.subplots(figsize=figsize, facecolor=self.bg_color)
            self.canvas = FigureCanvas(self.fig)  # Set common axis properties
            self.ax.set_facecolor(self.bg_color)
            self.color_mapping = {}
            self.ax.axis("equal") if type == "pie" else None  # Ensure pie chart is circular

    def process_data(self, im0, frame_number):
        """

        Process the image data, run object tracking.



        Args:

            im0 (ndarray): Input image for processing.

            frame_number (int): Video frame # for plotting the data.

        """
        self.extract_tracks(im0)  # Extract tracks

        if self.type == "line":
            for box in self.boxes:
                self.total_counts += 1
            im0 = self.update_graph(frame_number=frame_number)
            self.total_counts = 0
        elif self.type == "pie" or self.type == "bar" or self.type == "area":
            self.clswise_count = {}
            for box, cls in zip(self.boxes, self.clss):
                if self.names[int(cls)] in self.clswise_count:
                    self.clswise_count[self.names[int(cls)]] += 1
                else:
                    self.clswise_count[self.names[int(cls)]] = 1
            im0 = self.update_graph(frame_number=frame_number, count_dict=self.clswise_count, plot=self.type)
        else:
            raise ModuleNotFoundError(f"{self.type} chart is not supported ❌")
        return im0

    def update_graph(self, frame_number, count_dict=None, plot="line"):
        """

        Update the graph (line or area) with new data for single or multiple classes.



        Args:

            frame_number (int): The current frame number.

            count_dict (dict, optional): Dictionary with class names as keys and counts as values for multiple classes.

                                          If None, updates a single line graph.

            plot (str): Type of the plot i.e. line, bar or area.

        """
        if count_dict is None:
            # Single line update
            x_data = np.append(self.line.get_xdata(), float(frame_number))
            y_data = np.append(self.line.get_ydata(), float(self.total_counts))

            if len(x_data) > self.max_points:
                x_data, y_data = x_data[-self.max_points :], y_data[-self.max_points :]

            self.line.set_data(x_data, y_data)
            self.line.set_label("Counts")
            self.line.set_color("#7b0068")  # Pink color
            self.line.set_marker("*")
            self.line.set_markersize(self.line_width * 5)
        else:
            labels = list(count_dict.keys())
            counts = list(count_dict.values())
            if plot == "area":
                color_cycle = cycle(["#DD00BA", "#042AFF", "#FF4447", "#7D24FF", "#BD00FF"])
                # Multiple lines or area update
                x_data = self.ax.lines[0].get_xdata() if self.ax.lines else np.array([])
                y_data_dict = {key: np.array([]) for key in count_dict.keys()}
                if self.ax.lines:
                    for line, key in zip(self.ax.lines, count_dict.keys()):
                        y_data_dict[key] = line.get_ydata()

                x_data = np.append(x_data, float(frame_number))
                max_length = len(x_data)
                for key in count_dict.keys():
                    y_data_dict[key] = np.append(y_data_dict[key], float(count_dict[key]))
                    if len(y_data_dict[key]) < max_length:
                        y_data_dict[key] = np.pad(y_data_dict[key], (0, max_length - len(y_data_dict[key])), "constant")
                if len(x_data) > self.max_points:
                    x_data = x_data[1:]
                    for key in count_dict.keys():
                        y_data_dict[key] = y_data_dict[key][1:]

                self.ax.clear()
                for key, y_data in y_data_dict.items():
                    color = next(color_cycle)
                    self.ax.fill_between(x_data, y_data, color=color, alpha=0.7)
                    self.ax.plot(
                        x_data,
                        y_data,
                        color=color,
                        linewidth=self.line_width,
                        marker="o",
                        markersize=self.line_width * 5,
                        label=f"{key} Data Points",
                    )
            if plot == "bar":
                self.ax.clear()  # clear bar data
                for label in labels:  # Map labels to colors
                    if label not in self.color_mapping:
                        self.color_mapping[label] = next(self.color_cycle)
                colors = [self.color_mapping[label] for label in labels]
                bars = self.ax.bar(labels, counts, color=colors)
                for bar, count in zip(bars, counts):
                    self.ax.text(
                        bar.get_x() + bar.get_width() / 2,
                        bar.get_height(),
                        str(count),
                        ha="center",
                        va="bottom",
                        color=self.fg_color,
                    )
                # Create the legend using labels from the bars
                for bar, label in zip(bars, labels):
                    bar.set_label(label)  # Assign label to each bar
                self.ax.legend(loc="upper left", fontsize=13, facecolor=self.fg_color, edgecolor=self.fg_color)
            if plot == "pie":
                total = sum(counts)
                percentages = [size / total * 100 for size in counts]
                start_angle = 90
                self.ax.clear()

                # Create pie chart and create legend labels with percentages
                wedges, autotexts = self.ax.pie(
                    counts, labels=labels, startangle=start_angle, textprops={"color": self.fg_color}, autopct=None
                )
                legend_labels = [f"{label} ({percentage:.1f}%)" for label, percentage in zip(labels, percentages)]

                # Assign the legend using the wedges and manually created labels
                self.ax.legend(wedges, legend_labels, title="Classes", loc="center left", bbox_to_anchor=(1, 0, 0.5, 1))
                self.fig.subplots_adjust(left=0.1, right=0.75)  # Adjust layout to fit the legend

        # Common plot settings
        self.ax.set_facecolor("#f0f0f0")  # Set to light gray or any other color you like
        self.ax.set_title(self.title, color=self.fg_color, fontsize=self.fontsize)
        self.ax.set_xlabel(self.x_label, color=self.fg_color, fontsize=self.fontsize - 3)
        self.ax.set_ylabel(self.y_label, color=self.fg_color, fontsize=self.fontsize - 3)

        # Add and format legend
        legend = self.ax.legend(loc="upper left", fontsize=13, facecolor=self.bg_color, edgecolor=self.bg_color)
        for text in legend.get_texts():
            text.set_color(self.fg_color)

        # Redraw graph, update view, capture, and display the updated plot
        self.ax.relim()
        self.ax.autoscale_view()
        self.canvas.draw()
        im0 = np.array(self.canvas.renderer.buffer_rgba())
        im0 = cv2.cvtColor(im0[:, :, :3], cv2.COLOR_RGBA2BGR)
        self.display_output(im0)

        return im0  # Return the image