File size: 3,240 Bytes
f6228f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
# Ultralytics YOLO 🚀, AGPL-3.0 license
from time import time
import numpy as np
from ultralytics.solutions.solutions import BaseSolution, LineString
from ultralytics.utils.plotting import Annotator, colors
class SpeedEstimator(BaseSolution):
"""A class to estimate the speed of objects in a real-time video stream based on their tracks."""
def __init__(self, **kwargs):
"""Initializes the SpeedEstimator with the given parameters."""
super().__init__(**kwargs)
self.initialize_region() # Initialize speed region
self.spd = {} # set for speed data
self.trkd_ids = [] # list for already speed_estimated and tracked ID's
self.trk_pt = {} # set for tracks previous time
self.trk_pp = {} # set for tracks previous point
def estimate_speed(self, im0):
"""
Estimates the speed of objects based on tracking data.
Args:
im0 (ndarray): The input image that will be used for processing
Returns
im0 (ndarray): The processed image for more usage
"""
self.annotator = Annotator(im0, line_width=self.line_width) # Initialize annotator
self.extract_tracks(im0) # Extract tracks
self.annotator.draw_region(
reg_pts=self.region, color=(104, 0, 123), thickness=self.line_width * 2
) # Draw region
for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss):
self.store_tracking_history(track_id, box) # Store track history
# Check if track_id is already in self.trk_pp or trk_pt initialize if not
if track_id not in self.trk_pt:
self.trk_pt[track_id] = 0
if track_id not in self.trk_pp:
self.trk_pp[track_id] = self.track_line[-1]
speed_label = f"{int(self.spd[track_id])} km/h" if track_id in self.spd else self.names[int(cls)]
self.annotator.box_label(box, label=speed_label, color=colors(track_id, True)) # Draw bounding box
# Draw tracks of objects
self.annotator.draw_centroid_and_tracks(
self.track_line, color=colors(int(track_id), True), track_thickness=self.line_width
)
# Calculate object speed and direction based on region intersection
if LineString([self.trk_pp[track_id], self.track_line[-1]]).intersects(self.l_s):
direction = "known"
else:
direction = "unknown"
# Perform speed calculation and tracking updates if direction is valid
if direction == "known" and track_id not in self.trkd_ids:
self.trkd_ids.append(track_id)
time_difference = time() - self.trk_pt[track_id]
if time_difference > 0:
self.spd[track_id] = np.abs(self.track_line[-1][1] - self.trk_pp[track_id][1]) / time_difference
self.trk_pt[track_id] = time()
self.trk_pp[track_id] = self.track_line[-1]
self.display_output(im0) # display output with base class function
return im0 # return output image for more usage
|