alakxender commited on
Commit
4b1d1b4
·
verified ·
1 Parent(s): 8966d6c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +90 -192
README.md CHANGED
@@ -1,199 +1,97 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
4
  ---
 
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: apache-2.0
4
+ datasets:
5
+ - alakxender/dhivehi-image-text
6
+ language:
7
+ - dv
8
+ base_model:
9
+ - facebook/deit-base-distilled-patch16-384
10
  ---
11
+ # TrOCR Finetuned for Dhivehi Text Recognition
12
 
13
+ A TrOCR model finetuned for Dhivehi (Divehi/Maldivian) text recognition using DeiT base encoder and BERT decoder.
 
 
 
 
14
 
15
  ## Model Details
16
 
17
+ - Base models:
18
+ - Encoder: facebook/deit-base-distilled-patch16-384
19
+ - Decoder: alakxender/bert-base-dv
20
+ - Training data: 10k samples with 90/10 train/test split
21
+ - Input size: 384x384 pixels
22
+ - Beam search parameters:
23
+ - max_length: 64
24
+ - num_beams: 4
25
+ - early_stopping: True
26
+ - length_penalty: 2.0
27
+ - no_repeat_ngram_size: 3
28
+
29
+ ## Training
30
+
31
+ The model was trained with:
32
+ - 7 epochs
33
+ - Batch size: 8
34
+ - Learning rate: 4e-5
35
+ - FP16 mixed precision
36
+ - Training augmentations:
37
+ - Elastic transform (α=8.0, σ=5.0)
38
+ - Gaussian blur (kernel size=(5,9), σ=(0.1,5))
39
+ - Resize (384x384)
40
+ - Normalization ([0.5,0.5,0.5], [0.5,0.5,0.5])
41
+
42
+ ## Usage
43
+
44
+ ```python
45
+ from PIL import Image
46
+ import torch
47
+ from transformers import DeiTImageProcessor, TrOCRProcessor, VisionEncoderDecoderModel, AutoTokenizer
48
+
49
+ def load_model():
50
+ # Initialize components
51
+ tokenizer = AutoTokenizer.from_pretrained("alakxender/bert-base-dv")
52
+ image_processor = DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-384")
53
+ processor = TrOCRProcessor(image_processor=image_processor, tokenizer=tokenizer)
54
+ model = VisionEncoderDecoderModel.from_pretrained("alakxender/trocr-dv-diet-base-bert")
55
+
56
+ # Set device
57
+ device = "cuda" if torch.cuda.is_available() else "cpu"
58
+ model = model.to(device)
59
+
60
+ return model, processor, device
61
+
62
+ def predict(image_path, model, processor, device):
63
+ # Load and process image
64
+ image = Image.open(image_path).convert("RGB")
65
+ pixel_values = processor(image, return_tensors="pt").pixel_values.to(device)
66
+
67
+ # Generate prediction
68
+ outputs = model.generate(
69
+ pixel_values,
70
+ max_length=64,
71
+ num_beams=4,
72
+ early_stopping=True,
73
+ length_penalty=2.0,
74
+ no_repeat_ngram_size=3
75
+ )
76
+
77
+ # Decode prediction
78
+ predicted_text = processor.decode(outputs[0], skip_special_tokens=True)
79
+ return predicted_text
80
+
81
+ # Example usage
82
+ model, processor, device = load_model()
83
+ predicted_text = predict("example.jpg", model, processor, device)
84
+ print(predicted_text)
85
+ ```
86
+
87
+ ## Evaluation Results
88
+
89
+ ```json
90
+ [
91
+ {
92
+ "file_name": "data/images/DV01-04/DV01-04_140.jpg",
93
+ "predicted_text": "ޤާނޫނުގެ 42 ވަނަ މާއްދާގައި ލާޒިމްކުރާ މި ރިޕޯޓު ތައްޔާރުކޮށް ފޮނުވުމުގެ ޒިންމާއަކީ ޤާނޫނުން އިދާރާގެ އިންފޮމޭޝަން އޮފިސަރު ކުރައްވަންޖެހޭ ކަމެކެވެ .",
94
+ "true_text": "ޤާނޫނުގެ 42 ވަނަ މާއްދާގައި ލާޒިމްކުރާ މި ރިޕޯޓު ތައްޔާރުކޮށް ފޮނުވުމުގެ ޒިންމާއަކީ ޤާނޫނުން އިދާރާގެ އިންފޮމޭޝަން އޮފިސަރު ކުރައްވަންޖެހޭ ކަމެކެވެ."
95
+ }
96
+ ]
97
+ ```