{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x784ae46daef0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x784ae46daf80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x784ae46db010>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x784ae46db0a0>", "_build": "<function ActorCriticPolicy._build at 0x784ae46db130>", "forward": "<function ActorCriticPolicy.forward at 0x784ae46db1c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x784ae46db250>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x784ae46db2e0>", "_predict": "<function ActorCriticPolicy._predict at 0x784ae46db370>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x784ae46db400>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x784ae46db490>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x784ae46db520>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x784ae4682800>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1722235189271849291, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAC7mr7644sm9bP3EutNR3LlOwu8+xQzsOQAAgD8AAIA/Bo5zvtFKCD9vFCM96cLMvj34Dr6MOoG9AAAAAAAAAABmK668j1Zium1ssTeJpZoyOjlgOqO30LYAAIA/AACAP0Blqr6Z60Q/KFIaPRowx75BY3K+nn9BPgAAAAAAAAAAJhHvPcN+Uz8YVh68ccqOvkqBOz224a69AAAAAAAAAABAD8E9FPUEP41oNb6MLoO+JWcAvVB+4b0AAAAAAAAAAM40zr4O8mQ/KH5OPeLUtb5lNKe+G8MLPgAAAAAAAAAAZlbbupxXhD/qWyc7U7XPvqw8ybyeCBw9AAAAAAAAAAAaQtu9wyIkPfy6JD4N6Ia+3NGSPNGthD0AAAAAAAAAAJqjZbw3gbI/nV7rvgCuib6fWSM86JW1PAAAAAAAAAAAACVDPVLgpbmiohU7UrmDt7k0oDq8JIC2AACAPwAAgD/KH6q+cM97P4l6mL6M2N++ury0vhp+AjwAAAAAAAAAADO1Vjz2zGy6yvmutjW2prEDEqQ540fNNQAAgD8AAIA/c5wpvo/fwz5lglE+9oyKvm6DPjuGwnQ9AAAAAAAAAACmpac+Y4xoPy2Av70a0pS+aZ43Pug1wL0AAAAAAAAAABrlCr3j0Dg/2tp6PKrajL7B3XK9zc1QPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIm9Ni6QNmMAWyUTQ0BjAF0lEdAkOCDzZpSJnV9lChoBkdAcOXNZNfw7WgHTSwBaAhHQJDg3jcVQAN1fZQoaAZHQHEANq59Vm1oB00UAWgIR0CQ4degL7XQdX2UKGgGR0BySI/mknCwaAdNCgFoCEdAkOHl4xDb8HV9lChoBkdAcLyoR7JGOWgHTQwBaAhHQJDiFoRIz311fZQoaAZHQGufYJ/oaDRoB00gAWgIR0CQ48i7kGRndX2UKGgGR0Bw4RlWfbsXaAdNFQFoCEdAkOP2PcSGrXV9lChoBkdAcJcP3ztkWmgHTRoBaAhHQJDkOgh8pkR1fZQoaAZHQHLzq0dBBzFoB01+AWgIR0CQ5GUoa1kUdX2UKGgGR0BzKsbrC3w1aAdL6WgIR0CQ5W1J17pndX2UKGgGR0BwVH1bqyGBaAdNAQFoCEdAkOWhd6cAinV9lChoBkdAcdB5+YtxuWgHTe4BaAhHQJDlvpfQa751fZQoaAZHQHAIs0cfeUJoB006AWgIR0CQ5cl/H5rQdX2UKGgGR0BufAggX/HYaAdNRAFoCEdAkOYFIuoP1HV9lChoBkdAcZQ60Y0l7mgHTRQBaAhHQJDpYf9xZMd1fZQoaAZHQHHBRRQ79ydoB00fAWgIR0CQ6WlJ6IFedX2UKGgGR0BwvefUWl/IaAdNNwFoCEdAkOmEhRqGlHV9lChoBkdAcFaLhaTwD2gHS/poCEdAkOnHU2DQJHV9lChoBkdAcU0Dbah6B2gHTQABaAhHQJDpyO2iL2p1fZQoaAZHQG1uvdEb5uZoB00IAWgIR0CQ6guV5a/zdX2UKGgGR0BvLTMxGlQ/aAdL/GgIR0CQ6+e2/i5vdX2UKGgGR0Bt6amALApKaAdNIAFoCEdAkO4H8baRIXV9lChoBkdAcu2Sr5qM32gHS/ZoCEdAkO5G0VrRB3V9lChoBkdAcVZAWSEDhmgHTToBaAhHQJDvcWP91lp1fZQoaAZHQHHFBPGhmGxoB00PAWgIR0CQ75Gxlg+hdX2UKGgGR0BrwICEHt4SaAdN+AJoCEdAkO/mYv38GnV9lChoBkdAcjNHARChOGgHTRYBaAhHQJDwQ9yLhrF1fZQoaAZHQHDSGGM4tHxoB001AWgIR0CQ8KIWP91mdX2UKGgGR0BzTmez2OABaAdNbQFoCEdAkPDbsKLKm3V9lChoBkdAcdqQcghbGGgHTTIBaAhHQJDw9aRp1zR1fZQoaAZHQG5SiFCb+cZoB00FAWgIR0CQ9JgMMI/rdX2UKGgGR0Byjw4aP0ZnaAdNGAFoCEdAkPSvFJg9eXV9lChoBkdAcEdaJyhi9mgHTRoBaAhHQJD1QQd0aIh1fZQoaAZHQHFUkXUH6dloB00iAWgIR0CQ9UuJDVpcdX2UKGgGR0Bv6oG8mKIjaAdNIwFoCEdAkPWbEDQqqnV9lChoBkdAcLUyeqaPS2gHTToBaAhHQJD2GzeGfwt1fZQoaAZHQG6s0DMeOn5oB00rAWgIR0CQ96v114gSdX2UKGgGR0BwX9JNCZ4OaAdNEQFoCEdAkPh79l2/z3V9lChoBkdAbMUKmbb1y2gHTR4BaAhHQJD5GROk+HJ1fZQoaAZHQG0k6+evpyJoB00SAWgIR0CQ+YfyPMjedX2UKGgGR0Bv4dcry1/laAdNLQFoCEdAkPp6qOtGNXV9lChoBkdAb+Ot+1Bt12gHTSABaAhHQJD6pc2R7qp1fZQoaAZHQHHcH0Cih39oB00nAWgIR0CQ+yh24d6tdX2UKGgGR0ByU9D5TIeYaAdNLQFoCEdAkPuJ8neBQXV9lChoBkdAbh+DjBEa2mgHTTwBaAhHQJENa5H3Del1fZQoaAZHQGt1sFUyYXxoB01nAWgIR0CRDdqSX+l1dX2UKGgGR0BwImB9Tgl4aAdNCAFoCEdAkQ6wiA2AG3V9lChoBkdAb1nKzRhMJ2gHS/xoCEdAkQ63xaxHG3V9lChoBkdAbm5xn3+MqGgHTQYBaAhHQJEPBg9eQdV1fZQoaAZHQHFcF5nlGPRoB00qAWgIR0CRD5vl2eQNdX2UKGgGR0BxUl1JUYKqaAdNFQFoCEdAkQ+yn+AEuHV9lChoBkdAbrBShJyyU2gHTRsBaAhHQJEQLWTX8O11fZQoaAZHQG8NTWPLgXNoB00MAWgIR0CREP8QqZtvdX2UKGgGR0BwZrMhX8wYaAdNBgFoCEdAkRF71ZkkKXV9lChoBkdAb3Lnjhky12gHTRIBaAhHQJESUCdSVGF1fZQoaAZHQHJJ7k4m1IBoB00kAWgIR0CREzpRoAXEdX2UKGgGR0BvFl3KSxJNaAdNBgFoCEdAkRNfiHZbp3V9lChoBkdAbJrHvMKTjmgHTQUBaAhHQJEUOm1pj+d1fZQoaAZHQHEjqwpvxYtoB01HAWgIR0CRFT+G47RwdX2UKGgGR0BvJAjQiRnwaAdNFAFoCEdAkRW5mNBF/nV9lChoBkdAcMYuctoSMGgHTS8BaAhHQJEWF1hb4ah1fZQoaAZHQHA0nWOIZZVoB01SAWgIR0CRFjz3RG+cdX2UKGgGR0BLXOpCKJl8aAdL1mgIR0CRFlY6XBxhdX2UKGgGR0BwaOrbQC0XaAdNDwFoCEdAkRZsmBvrGHV9lChoBkdAciGwi7kGRmgHTSABaAhHQJEW1fv4M4N1fZQoaAZHQHIIV54W1txoB00GAWgIR0CRFwZSeiBYdX2UKGgGR0Bx4dyMkyDaaAdNIAFoCEdAkRcYYzi0fHV9lChoBkdAcULiLl3hXWgHTSMBaAhHQJEXqNsFdLR1fZQoaAZHQHAtJP69CeFoB00PAWgIR0CRGIQzDXOGdX2UKGgGR0BwqUwfyPMjaAdNJQFoCEdAkRmdsnAqNXV9lChoBkdAcWbHu7YkFGgHTQYBaAhHQJEZmt4iX6Z1fZQoaAZHQHBBeV5a/ypoB00eAWgIR0CRGxyrPt2LdX2UKGgGR0BuMdUhmoR7aAdNFgFoCEdAkRz6NEPUa3V9lChoBkdAb+e5zYEns2gHTUEBaAhHQJEdWnwXqJN1fZQoaAZHQG91fNA1NxloB00FAWgIR0CRHYO/cnE3dX2UKGgGR0BxiPQjUutfaAdNHAFoCEdAkR2zJ+2E03V9lChoBkdAcHKyZKFqSGgHS/1oCEdAkR+iXhOxjnV9lChoBkdAbUx72tdRi2gHTTEBaAhHQJEfpJ+UhV51fZQoaAZHQHIiIiC8OCpoB00VAWgIR0CRH7KHO8kEdX2UKGgGR0BxRXXkHUtqaAdNQgFoCEdAkR/el9BrvnV9lChoBkdAcs7mE4//vWgHTUQBaAhHQJEgSAG0NSZ1fZQoaAZHQGflxz7uUlloB02nAWgIR0CRIGRJVbRndX2UKGgGR0BzCkAq/dqMaAdL+mgIR0CRIMtbcGkfdX2UKGgGR0Bwwwr+YMOPaAdNZQFoCEdAkSIzewcHW3V9lChoBkdAcLQTBInSfGgHTQkBaAhHQJEiwh8pkPN1fZQoaAZHQHJtn5i3G4toB01uAWgIR0CRIsyDIzWPdX2UKGgGR0BxmyXv6TGHaAdNKAFoCEdAkSPTgEU0vXV9lChoBkdAbhqK9f1Hv2gHS/xoCEdAkSRKtT1kD3V9lChoBkdAcQCmknCwbGgHS/1oCEdAkSdtgKF7D3V9lChoBkdAbkISPluFYmgHTRgBaAhHQJEoflijL0V1fZQoaAZHQGwHeqioKlZoB01HAWgIR0CRKhzByjpLdX2UKGgGR0ButFITXarWaAdNFgFoCEdAkSubxZuAJHV9lChoBkdAcIJ974SHumgHTSgBaAhHQJErtCNS6191fZQoaAZHQG5Nd6sySFJoB00aAWgIR0CRK+X/o7mudX2UKGgGR0Bwddct5D7ZaAdNKwFoCEdAkSwF58jRlnV9lChoBkdAbzAlGgBcRmgHTTUBaAhHQJEsMcfeUIN1fZQoaAZHQHGFaUiY9gZoB00YAWgIR0CRLEEuQIUrdX2UKGgGR0BxhtipeeFtaAdNRwFoCEdAkSzLT+ee4HV9lChoBkdAcbPD+R5kb2gHTRUBaAhHQJEtYIQe3hJ1fZQoaAZHQG3QlT3qRlpoB00CAWgIR0CRLpZWJaaDdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |