lannelin commited on
Commit
8959895
·
1 Parent(s): f21d146

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -3
README.md CHANGED
@@ -80,11 +80,11 @@ def process_nli(premise: str, hypothesis: str):
80
 
81
 
82
  # construct sequence of premise, hypothesis pairs
83
- seqs = [(sequence_to_classify, hypothesis_template.format(label)) for label in
84
  candidate_labels]
85
  # format for mt5 xnli task
86
  seqs = [process_nli(premise=premise, hypothesis=hypothesis) for
87
- premise, hypothesis in seqs]
88
  print(seqs)
89
  # ['xnli: premise: ¿A quién vas a votar en 2020? hypothesis: Este ejemplo es Europa.',
90
  # 'xnli: premise: ¿A quién vas a votar en 2020? hypothesis: Este ejemplo es salud pública.',
@@ -147,7 +147,6 @@ print(dict(zip(candidate_labels, entail_probas.tolist())))
147
  # 'salud pública': 0.0004287279152777046,
148
  # 'política': 0.9919371604919434}
149
 
150
-
151
  ```
152
 
153
  Unfortunately, the `generate` function for the TF equivalent model doesn't exactly mirror the PyTorch version so the above code won't directly transfer.
 
80
 
81
 
82
  # construct sequence of premise, hypothesis pairs
83
+ pairs = [(sequence_to_classify, hypothesis_template.format(label)) for label in
84
  candidate_labels]
85
  # format for mt5 xnli task
86
  seqs = [process_nli(premise=premise, hypothesis=hypothesis) for
87
+ premise, hypothesis in pairs]
88
  print(seqs)
89
  # ['xnli: premise: ¿A quién vas a votar en 2020? hypothesis: Este ejemplo es Europa.',
90
  # 'xnli: premise: ¿A quién vas a votar en 2020? hypothesis: Este ejemplo es salud pública.',
 
147
  # 'salud pública': 0.0004287279152777046,
148
  # 'política': 0.9919371604919434}
149
 
 
150
  ```
151
 
152
  Unfortunately, the `generate` function for the TF equivalent model doesn't exactly mirror the PyTorch version so the above code won't directly transfer.