--- library_name: transformers license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy - wer model-index: - name: bert-base-cased-finetuned results: [] --- # bert-base-cased-finetuned This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0218 - Precision: 0.8097 - Recall: 0.8573 - F1: 0.8328 - Accuracy: 0.9938 - Wer: 0.0062 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:------:| | 0.0453 | 1.0 | 774 | 0.0182 | 0.7838 | 0.8731 | 0.8261 | 0.9935 | 0.0065 | | 0.015 | 2.0 | 1548 | 0.0167 | 0.7852 | 0.8749 | 0.8276 | 0.9937 | 0.0063 | | 0.0106 | 3.0 | 2322 | 0.0176 | 0.8110 | 0.8496 | 0.8299 | 0.9938 | 0.0062 | | 0.0076 | 4.0 | 3096 | 0.0196 | 0.8353 | 0.8399 | 0.8376 | 0.9942 | 0.0058 | | 0.0061 | 5.0 | 3870 | 0.0218 | 0.8097 | 0.8573 | 0.8328 | 0.9938 | 0.0062 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1