--- library_name: transformers license: mit base_model: cjber/reddit-ner-place_names tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy - wer model-index: - name: reddit-ner-place_names-finetuned results: [] --- # reddit-ner-place_names-finetuned This model is a fine-tuned version of [cjber/reddit-ner-place_names](https://huggingface.co/cjber/reddit-ner-place_names) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0301 - Precision: 0.8010 - Recall: 0.8406 - F1: 0.8203 - Accuracy: 0.9929 - Wer: 0.0071 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:------:| | 0.024 | 1.0 | 1535 | 0.0214 | 0.7826 | 0.8414 | 0.8109 | 0.9924 | 0.0075 | | 0.0173 | 2.0 | 3070 | 0.0203 | 0.7865 | 0.8526 | 0.8182 | 0.9928 | 0.0072 | | 0.0109 | 3.0 | 4605 | 0.0234 | 0.8166 | 0.8351 | 0.8257 | 0.9930 | 0.0070 | | 0.0078 | 4.0 | 6140 | 0.0264 | 0.8179 | 0.8259 | 0.8219 | 0.9930 | 0.0070 | | 0.005 | 5.0 | 7675 | 0.0301 | 0.8010 | 0.8406 | 0.8203 | 0.9929 | 0.0071 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1