File size: 1,775 Bytes
d765a6b
f1cae3f
 
 
 
 
 
 
 
 
 
 
 
d765a6b
 
f1cae3f
 
d765a6b
f1cae3f
d765a6b
f1cae3f
 
 
 
 
 
 
d765a6b
f1cae3f
d765a6b
f1cae3f
d765a6b
f1cae3f
d765a6b
f1cae3f
d765a6b
f1cae3f
d765a6b
f1cae3f
d765a6b
f1cae3f
d765a6b
f1cae3f
d765a6b
f1cae3f
 
 
 
 
 
 
 
 
d765a6b
f1cae3f
d765a6b
f1cae3f
 
 
 
 
d765a6b
 
f1cae3f
d765a6b
f1cae3f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
base_model: indolem/indobertweet-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: without-cq
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# without-cq

This model is a fine-tuned version of [indolem/indobertweet-base-uncased](https://huggingface.co/indolem/indobertweet-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1785
- Accuracy: 0.6604
- Precision: 0.6734
- Recall: 0.6604
- F1: 0.6643

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.0888        | 1.0   | 266  | 1.9147          | 0.6660   | 0.6707    | 0.6660 | 0.6668 |
| 0.0379        | 2.0   | 532  | 2.1358          | 0.6566   | 0.6523    | 0.6566 | 0.6525 |
| 0.0568        | 3.0   | 798  | 2.1785          | 0.6604   | 0.6734    | 0.6604 | 0.6643 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.19.1