{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f79065cef00>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681572747479526966, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKqQML76Dlu/9y8cv35rmT+9Jdq/9Y3Avv+d/r17omO9y+LKv9JkzD1q0KE+tpYoQCCLgr/Zyd8+mv0APxGaHr+Cb7g/UwLTvkceEr+kl/y/0L+VP1LPq77Or54/TRXVP/rat7+9apk+YO+0v1PsPb+y/Kk/wfvzvnMHpjyYdlg/Ye6Bv5twoj6dc0C/Uredvw1Gpz9n3AW+mikbP6TsiL9Ujoy+6eUWv6LWBj96+cK+UKetv7PCpzzu8hi9yfqIP9aEnD43nAe/v0x0vjp72D4fOjI/vWqZPokaNT9T7D2/U+b4PWiPbb3nlvc+bObePvRiTb9wa7O+u2m/vq3KST84M8G/QKMuPnG17r5BUyo/YW6Sv8veGkChvS2+2hLeP/UO0z+03lpAS1aPvV97M78pA7g/AytZQFv+XD+n1AY/+tq3v71qmT5g77S/b4isP5CxCr0tjSm/LbSDvkMryj4SqJy/43x8P3dQcb6xkDa9TK+cv6Md/z5eHiE/GpsEPyNROr8y+Ei/O83aPuKeu72jIpY/G5qQv4czjr8OR1C/mGNdPihBo79c6YA/Qvqgvx86Mj+9apk+YO+0v1PsPb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAABuUQ2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+5zqPQAAAAAXk/C/AAAAAF4m+T0AAAAAwPX+PwAAAAAua3q8AAAAAKzh5T8AAAAAA4MFvgAAAADtFfq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATP7HtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDddZr0AAAAA0NUAwAAAAAA7c9W9AAAAACSs7D8AAAAAc62DvQAAAADUnv4/AAAAABwoED4AAAAAG2LjvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMsi9LUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDrYRy9AAAAAAfR9r8AAAAAzY+HvQAAAADA/OM/AAAAACoA97wAAAAAPg77PwAAAAD1/aw8AAAAAA4W+L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB2gX02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6G8zPAAAAADIIf6/AAAAACQcdz0AAAAAOnfmPwAAAADA5Qk+AAAAACvi4D8AAAAAt9KFPAAAAAASMuG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKLq2hoM8YCMAWyUTegDjAF0lEdAqc8uoegctHV9lChoBkdAob7fjCHh0mgHTegDaAhHQKnTLc+qzZ91fZQoaAZHQKBHIi5/b0xoB03oA2gIR0Cp1BQzDXOGdX2UKGgGR0ChNBxBE8aGaAdN6ANoCEdAqdSPR1HOKXV9lChoBkdAoRAGhkAggWgHTegDaAhHQKndhtelbeN1fZQoaAZHQKEqcrtE5QxoB03oA2gIR0Cp4l2bG3nZdX2UKGgGR0ChatP6sQumaAdN6ANoCEdAqeNSBd2Pk3V9lChoBkdAnuoLYkE9uGgHTegDaAhHQKnjy2MsH0N1fZQoaAZHQKEW7VWjoIRoB03oA2gIR0Cp6goSteUqdX2UKGgGR0CgzFsbFS88aAdN6ANoCEdAqe4d32VVxXV9lChoBkdAnKhbcwg1WWgHTegDaAhHQKnvARA8jiZ1fZQoaAZHQJ/y663AmAtoB03oA2gIR0Cp73UiILw4dX2UKGgGR0CZdqxs2vSuaAdN6ANoCEdAqfaVXYDkl3V9lChoBkdAneJycTakAWgHTegDaAhHQKn8y36Q/5d1fZQoaAZHQJfEeu4gA6xoB03oA2gIR0Cp/e85jpcHdX2UKGgGR0CcvlUbT+efaAdN6ANoCEdAqf5+qHXVb3V9lChoBkdAmHXwoG6f8WgHTegDaAhHQKoE3b1yvLZ1fZQoaAZHQJ3UHYHxBmhoB03oA2gIR0CqCRVgpjMFdX2UKGgGR0Cdrr2m51/2aAdN6ANoCEdAqgn9P557gXV9lChoBkdAnu7tu1ndwmgHTegDaAhHQKoKcfSQYDV1fZQoaAZHQKB801fmcONoB03oA2gIR0CqEKlj3EhrdX2UKGgGR0CYBIy6+WWyaAdN6ANoCEdAqhYkzQ/oq3V9lChoBkdAnfuHTZxrBWgHTegDaAhHQKoXhmaH9FZ1fZQoaAZHQJnIFpSJj2BoB03oA2gIR0CqGD5e7cwhdX2UKGgGR0Cewpgl4TsZaAdN6ANoCEdAqh+hqj8DS3V9lChoBkdAndxmpyZKF2gHTegDaAhHQKojnxlQMx51fZQoaAZHQKA3IUCaJANoB03oA2gIR0CqJIYbS7XhdX2UKGgGR0CggEJljEvTaAdN6ANoCEdAqiT/ogV45nV9lChoBkdAoPRj0jC53GgHTegDaAhHQKorJ446wMZ1fZQoaAZHQKHXdM7EHdJoB03oA2gIR0CqLzF0PpY+dX2UKGgGR0ChBshdUsFuaAdN6ANoCEdAqjBy1kUbk3V9lChoBkdAoOg7k6tDD2gHTegDaAhHQKoxIf4AS391fZQoaAZHQKDtRtWuHN5oB03oA2gIR0CqOhRDTjNqdX2UKGgGR0ChdfMvAXVLaAdN6ANoCEdAqj4ogq3EynV9lChoBkdAodCRp1zQu2gHTegDaAhHQKo/EOaOPvN1fZQoaAZHQKES/M3ZPEdoB03oA2gIR0CqP4WSU1Q7dX2UKGgGR0CgPWEAo5PuaAdN6ANoCEdAqkXmReTmn3V9lChoBkdAoWydgnc+JWgHTegDaAhHQKpJ73ai9Ix1fZQoaAZHQKIbl86V+qloB03oA2gIR0CqStZ+YtxudX2UKGgGR0ChcqFCCz1LaAdN6ANoCEdAqktSA6Mir3V9lChoBkdAoLMAUnG83GgHTegDaAhHQKpTqUoKD011fZQoaAZHQKDNSE7nxKBoB03oA2gIR0CqWQFJpWWAdX2UKGgGR0Cg5paq0dBCaAdN6ANoCEdAqlnmois4k3V9lChoBkdAnn8ZCjUNKGgHTegDaAhHQKpaXK8tf5V1fZQoaAZHQKBqNqDbrTpoB03oA2gIR0CqYHW38XN1dX2UKGgGR0CfSACaZx7zaAdN6ANoCEdAqmR/Xd0q6XV9lChoBkdAoOMPb9If82gHTegDaAhHQKplb3ztkWh1fZQoaAZHQKCpX5xiobZoB03oA2gIR0CqZerJ0W/KdX2UKGgGR0CcaSs54nndaAdN6ANoCEdAqmyGNWEK3XV9lChoBkdAmFjR4+r2g2gHTegDaAhHQKpyuPGyX2N1fZQoaAZHQJogRhttQ9BoB03oA2gIR0CqdFlspG4JdX2UKGgGR0CX4+hzeXRgaAdN6ANoCEdAqnUg7vG6w3V9lChoBkdAm/2SwB5ooWgHTegDaAhHQKp+r6D5CWx1fZQoaAZHQJyPUyHmA9VoB03oA2gIR0Cqgs9D6WPcdX2UKGgGR0Cf0jJ79hqkaAdN6ANoCEdAqoOyFPBSDXV9lChoBkdAoAR3Pomoi2gHTegDaAhHQKqEI3PzFuN1fZQoaAZHQKDqXfa6BiFoB03oA2gIR0CqikWcriEQdX2UKGgGR0ChjtzxgAp8aAdN6ANoCEdAqo5HChvitXV9lChoBkdAohLzrxAjZGgHTegDaAhHQKqPMFRpDeF1fZQoaAZHQKEkzwrDqGFoB03oA2gIR0Cqj6OktVaPdX2UKGgGR0CiMlJLVWjoaAdN6ANoCEdAqpfVEkSmInV9lChoBkdAoLrLNGEwnGgHTegDaAhHQKqdHHEMspZ1fZQoaAZHQKFKsOfdyktoB03oA2gIR0Cqng6kZaV2dX2UKGgGR0ChoLdLQHAzaAdN6ANoCEdAqp6F4FA3UHV9lChoBkdAoaPjzVc2SGgHTegDaAhHQKqkw7PIGQl1fZQoaAZHQJk/KlxffGdoB03oA2gIR0CqqN1PnB+GdX2UKGgGR0CTZzBzV+ZxaAdN6ANoCEdAqqnGsq8UVXV9lChoBkdAoHbksFt8/mgHTegDaAhHQKqqPPXTVlR1fZQoaAZHQJPTPseGO+9oB03oA2gIR0CqsOl5GBnSdX2UKGgGR0CaLnZezD4yaAdN6ANoCEdAqrcCo60Y0nV9lChoBkdAniirXYlIE2gHTegDaAhHQKq4Zqnm7rd1fZQoaAZHQJh/d9hJAdJoB03oA2gIR0CquR5BC2MLdX2UKGgGR0CfLdMINVinaAdN6ANoCEdAqr/HL5h0AHV9lChoBkdAoLvAuXeFc2gHTegDaAhHQKrDygnMMZx1fZQoaAZHQJ99vB68g6loB03oA2gIR0CqxKyKWLP2dX2UKGgGR0CgpwotthuwaAdN6ANoCEdAqsUfWOIZZXV9lChoBkdAoEYsoWpIc2gHTegDaAhHQKrLRfbblBB1fZQoaAZHQKEB7JxvNvBoB03oA2gIR0Cq0Eh0IToMdX2UKGgGR0Ch6do/A0sOaAdN6ANoCEdAqtGeOIZZS3V9lChoBkdAomiri++M62gHTegDaAhHQKrSV93KSxJ1fZQoaAZHQKBgEOmzjWFoB03oA2gIR0Cq2lMNUfgadX2UKGgGR0ChvM1IiC8OaAdN6ANoCEdAqt5ebVjI73V9lChoBkdAoi4Huogmq2gHTegDaAhHQKrfR+YtxuN1fZQoaAZHQKGwHBqKxcFoB03oA2gIR0Cq379IwudxdX2UKGgGR0CiiYDCxeLOaAdN6ANoCEdAquYQjKPn0XV9lChoBkdAoPEfxJ/XoWgHTegDaAhHQKrqO8SPEKp1fZQoaAZHQKFL7mZE2HdoB03oA2gIR0Cq6yen62v0dX2UKGgGR0Ch3S3rdFfBaAdN6ANoCEdAquvQUzsQd3V9lChoBkdAlFCGyC4Bm2gHTegDaAhHQKr1MRujynV1fZQoaAZHQJzf7nFHavloB03oA2gIR0Cq+TP5gw49dX2UKGgGR0CfqppZfUnYaAdN6ANoCEdAqvoh4+r2g3V9lChoBkdAnwAkojOcD2gHTegDaAhHQKr6oB/7SAp1fZQoaAZHQJ7Y7lPrOZ9oB03oA2gIR0CrAPPRZ2ZBdX2UKGgGR0CfkTpt78ekaAdN6ANoCEdAqwUeQCCBgHV9lChoBkdAoGyMPSUkfWgHTegDaAhHQKsGD1AZ88d1fZQoaAZHQKAvCgUUO/doB03oA2gIR0CrBoRz7uUmdX2UKGgGR0CgRYq1og3caAdN6ANoCEdAqw5dU0elsXV9lChoBkdAoMkPBi1Aq2gHTegDaAhHQKsT/nU2DQJ1fZQoaAZHQKA3G2oegctoB03oA2gIR0CrFOsLfDUFdX2UKGgGR0CiVm2Ifr8jaAdN6ANoCEdAqxVc0aZQYXVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}