--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: sdg-bert-base-multilingual-cased-classification results: - task: type: text-classification name: text-classification dataset: name: albertmartinez/OSDG type: albertmartinez/OSDG split: test metrics: - type: accuracy value: 0.7982568274259152 name: accuracy args: accuracy: 0.7982568274259152 - type: accuracy value: 0.7982568274259152 name: accuracy args: accuracy: 0.7982568274259152 total_time_in_seconds: 41.76398990501184 samples_per_second: 206.03874341439217 latency_in_seconds: 0.004853456119118169 - type: accuracy value: 0.7982568274259152 name: accuracy args: accuracy: 0.7982568274259152 total_time_in_seconds: 41.774588764994405 samples_per_second: 205.9864681950066 latency_in_seconds: 0.00485468782858738 --- # sdg-bert-base-multilingual-cased-classification This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7135 - Accuracy: 0.7981 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2927 | 1.0 | 269 | 0.8947 | 0.7515 | | 0.7953 | 2.0 | 538 | 0.7700 | 0.7795 | | 0.6549 | 3.0 | 807 | 0.7241 | 0.7937 | | 0.5658 | 4.0 | 1076 | 0.7135 | 0.7984 | | 0.4799 | 5.0 | 1345 | 0.7142 | 0.7941 | ### Framework versions - Transformers 4.49.0.dev0 - Pytorch 2.6.0+cu118 - Datasets 2.19.2 - Tokenizers 0.21.0