File size: 6,782 Bytes
e6570a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import argparse
import logging
import sys
import datetime
import os

import pandas as pd

from transformers import pipeline
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
from datasets import load_dataset, Audio
import evaluate

from belarusian_text_normalizer import BelarusianTextNormalizer


now_str = datetime.datetime.now().strftime('%Y%m%d-%H%M%S')


logger = logging.getLogger(__name__)
logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
    datefmt="%m/%d/%Y %H:%M:%S",
    handlers=[
        logging.StreamHandler(sys.stdout),
        logging.FileHandler(filename=f'eval_{now_str}.log', mode='w')
    ],
)
logger.setLevel(logging.INFO)


wer_metric = evaluate.load("wer")
text_normalizer = BelarusianTextNormalizer()


def is_target_text_in_range(ref):
    if ref.strip() == "ignore time segment in scoring":
        return False
    else:
        return ref.strip() != ""


def normalise(sample, text_column: str):
    sample["reference_norm"] = text_normalizer(sample[text_column])
    return sample


def data(dataset,text_column: str):
    for i, item in enumerate(dataset):
        yield {**item["audio"], "reference_norm": item["reference_norm"], 'reference': item[text_column]}


def clean_filename(filename: str):
    return filename.replace(os.path.sep, '_')


def main(args):
    logger.info(f'running evaluation script with following parameters: {args}')
    logger.info(f'using following text normalizer: {text_normalizer}')

    batch_size = args.batch_size
    whisper_asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device)

    whisper_asr.model.config.forced_decoder_ids = (
        whisper_asr.tokenizer.get_decoder_prompt_ids(
            language=args.language, task="transcribe"
        )
    )

    logger.info('loading dataset')
    dataset = load_dataset(
        args.dataset,
        args.config,
        split=args.split,
        streaming=args.streaming,
        use_auth_token=True,
    )

    # Only uncomment for debugging
    dataset = dataset.take(args.max_eval_samples)

    # TODO: probably no need in cast, because pipelien migh handle resampling internally. need to check
    dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
    dataset = dataset.map(normalise, fn_kwargs=dict(text_column=args.text_column))
    dataset = dataset.filter(is_target_text_in_range, input_columns=["reference_norm"])

    predictions = []
    predictions_norm = []
    references = []
    references_norm = []
    audio_paths = []

    logger.info('running inference')
    for out in whisper_asr(data(dataset, text_column=args.text_column), batch_size=batch_size):
        predictions.append(out["text"])
        predictions_norm.append(text_normalizer(out["text"]))
        references.append(out["reference"][0])
        references_norm.append(out["reference_norm"][0])
        audio_paths.append(out['path'][0])

    logger.info('computing metrics')
    wer = wer_metric.compute(references=references_norm, predictions=predictions_norm)
    wer = wer * 100

    logger.info('metrics computed')
    logger.info(f'WER: {wer}')

    if args.save_predictions is True:
        preds_fp = f'preds_{args.dataset}_{args.config}_{args.split}_{now_str}.tsv'
        preds_fp = clean_filename(preds_fp)
        logger.info(f'saving predictions to: "{preds_fp}"')
        preds_df = pd.DataFrame({
            'audio_path': audio_paths, 
            'prediction_norm': predictions_norm, 'reference_norm': references_norm,
            'prediction': predictions, 'reference': references, 
        })
        preds_df.to_csv(preds_fp, sep='\t', index=False)
    else:
        logger.info('save_predictions is False. will not save predictions to a file')

    if args.push_to_hub is True:
        logger.info(f'updating model card and pushing to HuggingFace Hub')
        evaluate.push_to_hub(
            model_id=args.model_id,

            metric_value=wer,
            metric_type="wer",
            metric_name="WER",

            dataset_name=args.dataset,
            dataset_type=args.dataset,
            dataset_config=args.config,
            dataset_split=args.split,
            
            task_type="automatic-speech-recognition",
            task_name="Automatic Speech Recognition"
        )
    else:
        logger.info('push_to_hub is False. will not update model card and push to HuggingFace Hub')


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--model_id",
        type=str,
        required=True,
        help="Model identifier. Should be loadable with 🤗 Transformers",
    )
    parser.add_argument(
        "--dataset",
        type=str,
        default="mozilla-foundation/common_voice_11_0",
        help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
    )
    parser.add_argument(
        "--config",
        type=str,
        required=True,
        help="Config of the dataset. *E.g.* `'en'` for the English split of Common Voice",
    )
    parser.add_argument(
        "--split",
        type=str,
        default="test",
        help="Split of the dataset. *E.g.* `'test'`",
    )
    parser.add_argument(
        "--text_column",
        type=str,
        required=True,
        help="Dataset column name containing target transcription of an audiofile"
    )
    parser.add_argument(
        "--device",
        type=int,
        default=-1,
        help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
    )
    parser.add_argument(
        "--batch_size",
        type=int,
        default=16,
        help="Number of samples to go through each streamed batch.",
    )
    parser.add_argument(
        "--max_eval_samples",
        type=int,
        default=None,
        help="Number of samples to be evaluated. Put a lower number e.g. 64 for testing this script.",
    )
    parser.add_argument(
        "--streaming",
        type=bool,
        default=True,
        help="Choose whether you'd like to download the entire dataset or stream it during the evaluation.",
    )
    parser.add_argument(
        "--language",
        type=str,
        required=True,
        help="Two letter language code for the transcription language, e.g. use 'en' for English.",
    )
    parser.add_argument(
        '--push_to_hub',
        type=bool,
        default=True,
        help="Whether to update model card and push changes to HuggingFace Hub"
    )
    parser.add_argument(
        '--save_predictions',
        type=bool,
        default=True,
        help="Whether to store predictions and target transcriptions to a file"
    )
    args = parser.parse_args()

    main(args)