ales commited on
Commit
9a35fa7
1 Parent(s): 74563ec

upd eval code

Browse files
src/bash_runners/{run_eval_cv11.sh → eval_cv11_test.sh} RENAMED
@@ -1,9 +1,10 @@
1
- python src/run_eval_whisper_streaming \
2
- --model_id="." \
3
  --language="be" \
4
  --dataset="mozilla-foundation/common_voice_11_0" \
5
  --config="be" \
6
  --split="test" \
 
7
  --device="0" \
8
  --batch_size="32" \
9
  --streaming="True"
 
1
+ python src/run_eval_whisper_streaming.py \
2
+ --model_id="$1" \
3
  --language="be" \
4
  --dataset="mozilla-foundation/common_voice_11_0" \
5
  --config="be" \
6
  --split="test" \
7
+ --text_column="sentence" \
8
  --device="0" \
9
  --batch_size="32" \
10
  --streaming="True"
src/bash_runners/eval_fleurs_test.sh ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ python src/run_eval_whisper_streaming.py \
2
+ --model_id="$1" \
3
+ --language="be" \
4
+ --dataset="google/fleurs" \
5
+ --config="be_by" \
6
+ --split="test" \
7
+ --text_column="transcription" \
8
+ --device="0" \
9
+ --batch_size="32" \
10
+ --streaming="True"
src/run_eval_whisper_streaming.py CHANGED
@@ -1,4 +1,7 @@
1
  import argparse
 
 
 
2
 
3
  from transformers import pipeline
4
  from transformers.models.whisper.english_normalizer import BasicTextNormalizer
@@ -8,7 +11,23 @@ import evaluate
8
  from belarusian_text_normalizer import BelarusianTextNormalizer
9
 
10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  wer_metric = evaluate.load("wer")
 
12
 
13
 
14
  def is_target_text_in_range(ref):
@@ -18,30 +37,9 @@ def is_target_text_in_range(ref):
18
  return ref.strip() != ""
19
 
20
 
21
- def get_text(sample):
22
- if "text" in sample:
23
- return sample["text"]
24
- elif "sentence" in sample:
25
- return sample["sentence"]
26
- elif "normalized_text" in sample:
27
- return sample["normalized_text"]
28
- elif "transcript" in sample:
29
- return sample["transcript"]
30
- elif "transcription" in sample:
31
- return sample["transcription"]
32
- else:
33
- raise ValueError(
34
- f"Expected transcript column of either 'text', 'sentence', 'normalized_text' or 'transcript'. Got sample of "
35
- ".join{sample.keys()}. Ensure a text column name is present in the dataset."
36
- )
37
-
38
-
39
- whisper_norm = BelarusianTextNormalizer()
40
-
41
-
42
- def normalise(batch):
43
- batch["norm_text"] = whisper_norm(get_text(batch))
44
- return batch
45
 
46
 
47
  def data(dataset):
@@ -50,10 +48,11 @@ def data(dataset):
50
 
51
 
52
  def main(args):
 
 
 
53
  batch_size = args.batch_size
54
- whisper_asr = pipeline(
55
- "automatic-speech-recognition", model=args.model_id, device=args.device
56
- )
57
 
58
  whisper_asr.model.config.forced_decoder_ids = (
59
  whisper_asr.tokenizer.get_decoder_prompt_ids(
@@ -61,6 +60,7 @@ def main(args):
61
  )
62
  )
63
 
 
64
  dataset = load_dataset(
65
  args.dataset,
66
  args.config,
@@ -73,30 +73,36 @@ def main(args):
73
  dataset = dataset.take(args.max_eval_samples)
74
 
75
  dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
76
- dataset = dataset.map(normalise)
77
  dataset = dataset.filter(is_target_text_in_range, input_columns=["norm_text"])
78
 
79
  predictions = []
80
  references = []
81
 
82
- # run streamed inference
83
  for out in whisper_asr(data(dataset), batch_size=batch_size):
84
  predictions.append(whisper_norm(out["text"]))
85
  references.append(out["reference"][0])
86
 
 
87
  wer = wer_metric.compute(references=references, predictions=predictions)
88
- wer = round(100 * wer, 2)
 
 
 
89
 
90
- print("WER:", wer)
91
  evaluate.push_to_hub(
92
  model_id=args.model_id,
 
93
  metric_value=wer,
94
  metric_type="wer",
95
  metric_name="WER",
 
96
  dataset_name=args.dataset,
97
  dataset_type=args.dataset,
98
- dataset_split=args.split,
99
  dataset_config=args.config,
 
 
100
  task_type="automatic-speech-recognition",
101
  task_name="Automatic Speech Recognition"
102
  )
@@ -129,7 +135,12 @@ if __name__ == "__main__":
129
  default="test",
130
  help="Split of the dataset. *E.g.* `'test'`",
131
  )
132
-
 
 
 
 
 
133
  parser.add_argument(
134
  "--device",
135
  type=int,
 
1
  import argparse
2
+ import logging
3
+ import sys
4
+ import datetime
5
 
6
  from transformers import pipeline
7
  from transformers.models.whisper.english_normalizer import BasicTextNormalizer
 
11
  from belarusian_text_normalizer import BelarusianTextNormalizer
12
 
13
 
14
+ now_str = datetime.datetime.now().strftime('%Y%m%d-%H%M%S')
15
+
16
+
17
+ logger = logging.getLogger(__name__)
18
+ logging.basicConfig(
19
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
20
+ datefmt="%m/%d/%Y %H:%M:%S",
21
+ handlers=[
22
+ logging.StreamHandler(sys.stdout),
23
+ logging.FileHandler(filename=f'eval_{now_str}.log', mode='w')
24
+ ],
25
+ )
26
+ logger.setLevel(logging.INFO)
27
+
28
+
29
  wer_metric = evaluate.load("wer")
30
+ whisper_norm = BelarusianTextNormalizer()
31
 
32
 
33
  def is_target_text_in_range(ref):
 
37
  return ref.strip() != ""
38
 
39
 
40
+ def normalise(sample, text_column: str):
41
+ sample["norm_text"] = whisper_norm(sample[text_column])
42
+ return sample
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
 
44
 
45
  def data(dataset):
 
48
 
49
 
50
  def main(args):
51
+ logger.info(f'running evaluation script with following parameters: {args}')
52
+ logger.info(f'using following text normalier: {whisper_norm}')
53
+
54
  batch_size = args.batch_size
55
+ whisper_asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device)
 
 
56
 
57
  whisper_asr.model.config.forced_decoder_ids = (
58
  whisper_asr.tokenizer.get_decoder_prompt_ids(
 
60
  )
61
  )
62
 
63
+ logger.info('loading dataset')
64
  dataset = load_dataset(
65
  args.dataset,
66
  args.config,
 
73
  dataset = dataset.take(args.max_eval_samples)
74
 
75
  dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
76
+ dataset = dataset.map(normalise, fn_kwargs=dict(text_column=args.text_column))
77
  dataset = dataset.filter(is_target_text_in_range, input_columns=["norm_text"])
78
 
79
  predictions = []
80
  references = []
81
 
82
+ logger.info('running inference')
83
  for out in whisper_asr(data(dataset), batch_size=batch_size):
84
  predictions.append(whisper_norm(out["text"]))
85
  references.append(out["reference"][0])
86
 
87
+ logger.info('computing metrics')
88
  wer = wer_metric.compute(references=references, predictions=predictions)
89
+ wer = wer * 100
90
+
91
+ logger.info('metrics computed')
92
+ logger.info(f'WER: {wer}')
93
 
 
94
  evaluate.push_to_hub(
95
  model_id=args.model_id,
96
+
97
  metric_value=wer,
98
  metric_type="wer",
99
  metric_name="WER",
100
+
101
  dataset_name=args.dataset,
102
  dataset_type=args.dataset,
 
103
  dataset_config=args.config,
104
+ dataset_split=args.split,
105
+
106
  task_type="automatic-speech-recognition",
107
  task_name="Automatic Speech Recognition"
108
  )
 
135
  default="test",
136
  help="Split of the dataset. *E.g.* `'test'`",
137
  )
138
+ parser.add_argument(
139
+ "--text_column",
140
+ type=str,
141
+ required=True,
142
+ help="Dataset column name containing target transcription of an audiofile"
143
+ )
144
  parser.add_argument(
145
  "--device",
146
  type=int,