upd src
Browse files- src/{run_base.sh → bash_runners/run_base.sh} +0 -0
- src/bash_runners/run_eval_cv11.sh +9 -0
- src/{run_small.sh → bash_runners/run_small.sh} +7 -8
- src/{run_tiny_debug.sh → bash_runners/run_tiny_debug.sh} +0 -0
- src/belarusian_text_normalizer.py +41 -0
- src/readme.md +10 -0
- src/run_eval_whisper_streaming.py +165 -0
- src/run_speech_recognition_seq2seq_streaming.py +1 -38
src/{run_base.sh → bash_runners/run_base.sh}
RENAMED
File without changes
|
src/bash_runners/run_eval_cv11.sh
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
python src/run_eval_whisper_streaming \
|
2 |
+
--model_id="." \
|
3 |
+
--language="be" \
|
4 |
+
--dataset="mozilla-foundation/common_voice_11_0" \
|
5 |
+
--config="be" \
|
6 |
+
--split="test" \
|
7 |
+
--device="0" \
|
8 |
+
--batch_size="32" \
|
9 |
+
--streaming="True"
|
src/{run_small.sh → bash_runners/run_small.sh}
RENAMED
@@ -1,5 +1,5 @@
|
|
1 |
python src/run_speech_recognition_seq2seq_streaming.py \
|
2 |
-
--model_name_or_path="
|
3 |
--dataset_name="mozilla-foundation/common_voice_11_0" \
|
4 |
--dataset_config_name="be" \
|
5 |
--language="be" \
|
@@ -7,14 +7,14 @@ python src/run_speech_recognition_seq2seq_streaming.py \
|
|
7 |
--eval_split_name="validation" \
|
8 |
--model_index_name="Whisper Small Belarusian" \
|
9 |
\
|
10 |
-
--max_steps="
|
11 |
--output_dir="./" \
|
12 |
--per_device_train_batch_size="64" \
|
13 |
-
--per_device_eval_batch_size="
|
14 |
--logging_steps="50" \
|
15 |
--logging_first_step \
|
16 |
-
--learning_rate="
|
17 |
-
--warmup_steps="
|
18 |
--evaluation_strategy="steps" \
|
19 |
--eval_steps="1000" \
|
20 |
--save_strategy="steps" \
|
@@ -39,6 +39,5 @@ python src/run_speech_recognition_seq2seq_streaming.py \
|
|
39 |
--do_normalize_eval \
|
40 |
--streaming_train="True" \
|
41 |
--streaming_eval="False" \
|
42 |
-
--
|
43 |
-
--
|
44 |
-
--hub_model_id="ales/whisper-small-belarusian"
|
|
|
1 |
python src/run_speech_recognition_seq2seq_streaming.py \
|
2 |
+
--model_name_or_path="ales/whisper-small-belarusian" \
|
3 |
--dataset_name="mozilla-foundation/common_voice_11_0" \
|
4 |
--dataset_config_name="be" \
|
5 |
--language="be" \
|
|
|
7 |
--eval_split_name="validation" \
|
8 |
--model_index_name="Whisper Small Belarusian" \
|
9 |
\
|
10 |
+
--max_steps="6000" \
|
11 |
--output_dir="./" \
|
12 |
--per_device_train_batch_size="64" \
|
13 |
+
--per_device_eval_batch_size="32" \
|
14 |
--logging_steps="50" \
|
15 |
--logging_first_step \
|
16 |
+
--learning_rate="3.5e-5" \
|
17 |
+
--warmup_steps="0" \
|
18 |
--evaluation_strategy="steps" \
|
19 |
--eval_steps="1000" \
|
20 |
--save_strategy="steps" \
|
|
|
39 |
--do_normalize_eval \
|
40 |
--streaming_train="True" \
|
41 |
--streaming_eval="False" \
|
42 |
+
--seed="43" \
|
43 |
+
--use_auth_token
|
|
src/{run_tiny_debug.sh → bash_runners/run_tiny_debug.sh}
RENAMED
File without changes
|
src/belarusian_text_normalizer.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import regex
|
3 |
+
import unicodedata
|
4 |
+
|
5 |
+
from typing import Iterable
|
6 |
+
|
7 |
+
|
8 |
+
class BelarusianTextNormalizer:
|
9 |
+
"""
|
10 |
+
Based on transformers.models.whisper.english_normalizer.BasicTextNormalizer
|
11 |
+
but with support not to remove certain characters.
|
12 |
+
e.g. apostrophe (') - a symbol from Belarusian alphabet - was removed using BasicTextNormalizer.
|
13 |
+
"""
|
14 |
+
|
15 |
+
def __init__(self, split_letters: bool = False):
|
16 |
+
self.split_letters = split_letters
|
17 |
+
self.allowed_symbols = ("'",)
|
18 |
+
|
19 |
+
@staticmethod
|
20 |
+
def clean(s: str, allowed_symbols: Iterable[str] = None):
|
21 |
+
"""
|
22 |
+
Replace any other markers, symbols, punctuations with a space, keeping diacritics
|
23 |
+
"""
|
24 |
+
if allowed_symbols is None:
|
25 |
+
allowed_symbols = []
|
26 |
+
res = "".join(" " if unicodedata.category(c)[0] in "MSP" and c not in allowed_symbols else c
|
27 |
+
for c in unicodedata.normalize("NFKC", s))
|
28 |
+
return res
|
29 |
+
|
30 |
+
def __call__(self, s: str):
|
31 |
+
s = s.lower()
|
32 |
+
s = re.sub(r"[<\[][^>\]]*[>\]]", "", s) # remove words between brackets
|
33 |
+
s = re.sub(r"\(([^)]+?)\)", "", s) # remove words between parenthesis
|
34 |
+
s = self.clean(s, allowed_symbols=self.allowed_symbols).lower()
|
35 |
+
|
36 |
+
if self.split_letters:
|
37 |
+
s = " ".join(regex.findall(r"\X", s, regex.U))
|
38 |
+
|
39 |
+
s = re.sub(r"\s+", " ", s) # replace any successive whitespace characters with a space
|
40 |
+
|
41 |
+
return s
|
src/readme.md
CHANGED
@@ -39,6 +39,9 @@ The code in this repository is a modified version of code from
|
|
39 |
|
40 |
## Resuming training from exising checkpoint
|
41 |
When resuming training from existing checkpoint:
|
|
|
|
|
|
|
42 |
* it's better to save all `checkpoint-\d+` dirs. better not to rely on data saved to `output_dir` because:
|
43 |
* not all data is saved to `output_dir`. e.g. following files are not saved to `output_dir`:
|
44 |
`optimizer.pt`, `rng_state.pth`, `scaler.pt`, `scheduler.pt`. so can't resume training in a correct way from
|
@@ -70,9 +73,16 @@ When resuming training from existing checkpoint:
|
|
70 |
but does StreamingDataset have any epochs?
|
71 |
* does streaming mode support parallel data load and processing?<br>
|
72 |
when using non-streaming mode we can use `dataset.map(..., num_proc=<num_proc>)`
|
|
|
|
|
|
|
73 |
|
74 |
|
75 |
## Notes:
|
|
|
|
|
|
|
|
|
76 |
* using CommonVoice 11 dataset in a streaming way.<br>
|
77 |
use `streaming=True` for train & validation & test.<br>
|
78 |
as an alternative, we can use `streaming=False` for validation & test sets to save time on data processing.
|
|
|
39 |
|
40 |
## Resuming training from exising checkpoint
|
41 |
When resuming training from existing checkpoint:
|
42 |
+
* when using streaming, epoch will get reset to 0. that means order of items passed to a model would be the same,
|
43 |
+
if the seed does not change. actual train_dataloader seed would be:
|
44 |
+
`train_dataloader.dataset.set_epoch(train_dataloader.dataset._epoch + 1)`
|
45 |
* it's better to save all `checkpoint-\d+` dirs. better not to rely on data saved to `output_dir` because:
|
46 |
* not all data is saved to `output_dir`. e.g. following files are not saved to `output_dir`:
|
47 |
`optimizer.pt`, `rng_state.pth`, `scaler.pt`, `scheduler.pt`. so can't resume training in a correct way from
|
|
|
73 |
but does StreamingDataset have any epochs?
|
74 |
* does streaming mode support parallel data load and processing?<br>
|
75 |
when using non-streaming mode we can use `dataset.map(..., num_proc=<num_proc>)`
|
76 |
+
* I got CUDA out of memory error when tried to launch a second training run for Whisper Small model.
|
77 |
+
training params are almost the same: `--per_device_train_batch_size="64"`
|
78 |
+
the only thing changed is that now evaluation dataset now doesn't use streaming.
|
79 |
|
80 |
|
81 |
## Notes:
|
82 |
+
* Common Voice 11 dataset
|
83 |
+
[uploaded to HuggingFace](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0)
|
84 |
+
has only single voicing of each sentence in each split (train, validation, test).<br>
|
85 |
+
Much more audiofiles should be available on Common Voice so that each sentence is voiced multiple times by different people
|
86 |
* using CommonVoice 11 dataset in a streaming way.<br>
|
87 |
use `streaming=True` for train & validation & test.<br>
|
88 |
as an alternative, we can use `streaming=False` for validation & test sets to save time on data processing.
|
src/run_eval_whisper_streaming.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
from transformers import pipeline
|
4 |
+
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
|
5 |
+
from datasets import load_dataset, Audio
|
6 |
+
import evaluate
|
7 |
+
|
8 |
+
from belarusian_text_normalizer import BelarusianTextNormalizer
|
9 |
+
|
10 |
+
|
11 |
+
wer_metric = evaluate.load("wer")
|
12 |
+
|
13 |
+
|
14 |
+
def is_target_text_in_range(ref):
|
15 |
+
if ref.strip() == "ignore time segment in scoring":
|
16 |
+
return False
|
17 |
+
else:
|
18 |
+
return ref.strip() != ""
|
19 |
+
|
20 |
+
|
21 |
+
def get_text(sample):
|
22 |
+
if "text" in sample:
|
23 |
+
return sample["text"]
|
24 |
+
elif "sentence" in sample:
|
25 |
+
return sample["sentence"]
|
26 |
+
elif "normalized_text" in sample:
|
27 |
+
return sample["normalized_text"]
|
28 |
+
elif "transcript" in sample:
|
29 |
+
return sample["transcript"]
|
30 |
+
elif "transcription" in sample:
|
31 |
+
return sample["transcription"]
|
32 |
+
else:
|
33 |
+
raise ValueError(
|
34 |
+
f"Expected transcript column of either 'text', 'sentence', 'normalized_text' or 'transcript'. Got sample of "
|
35 |
+
".join{sample.keys()}. Ensure a text column name is present in the dataset."
|
36 |
+
)
|
37 |
+
|
38 |
+
|
39 |
+
whisper_norm = BelarusianTextNormalizer()
|
40 |
+
|
41 |
+
|
42 |
+
def normalise(batch):
|
43 |
+
batch["norm_text"] = whisper_norm(get_text(batch))
|
44 |
+
return batch
|
45 |
+
|
46 |
+
|
47 |
+
def data(dataset):
|
48 |
+
for i, item in enumerate(dataset):
|
49 |
+
yield {**item["audio"], "reference": item["norm_text"]}
|
50 |
+
|
51 |
+
|
52 |
+
def main(args):
|
53 |
+
batch_size = args.batch_size
|
54 |
+
whisper_asr = pipeline(
|
55 |
+
"automatic-speech-recognition", model=args.model_id, device=args.device
|
56 |
+
)
|
57 |
+
|
58 |
+
whisper_asr.model.config.forced_decoder_ids = (
|
59 |
+
whisper_asr.tokenizer.get_decoder_prompt_ids(
|
60 |
+
language=args.language, task="transcribe"
|
61 |
+
)
|
62 |
+
)
|
63 |
+
|
64 |
+
dataset = load_dataset(
|
65 |
+
args.dataset,
|
66 |
+
args.config,
|
67 |
+
split=args.split,
|
68 |
+
streaming=args.streaming,
|
69 |
+
use_auth_token=True,
|
70 |
+
)
|
71 |
+
|
72 |
+
# Only uncomment for debugging
|
73 |
+
dataset = dataset.take(args.max_eval_samples)
|
74 |
+
|
75 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
|
76 |
+
dataset = dataset.map(normalise)
|
77 |
+
dataset = dataset.filter(is_target_text_in_range, input_columns=["norm_text"])
|
78 |
+
|
79 |
+
predictions = []
|
80 |
+
references = []
|
81 |
+
|
82 |
+
# run streamed inference
|
83 |
+
for out in whisper_asr(data(dataset), batch_size=batch_size):
|
84 |
+
predictions.append(whisper_norm(out["text"]))
|
85 |
+
references.append(out["reference"][0])
|
86 |
+
|
87 |
+
wer = wer_metric.compute(references=references, predictions=predictions)
|
88 |
+
wer = round(100 * wer, 2)
|
89 |
+
|
90 |
+
print("WER:", wer)
|
91 |
+
evaluate.push_to_hub(
|
92 |
+
model_id=args.model_id,
|
93 |
+
metric_value=wer,
|
94 |
+
metric_type="wer",
|
95 |
+
metric_name="WER",
|
96 |
+
dataset_name=args.dataset,
|
97 |
+
dataset_type=args.dataset,
|
98 |
+
dataset_split=args.split,
|
99 |
+
dataset_config=args.config,
|
100 |
+
task_type="automatic-speech-recognition",
|
101 |
+
task_name="Automatic Speech Recognition"
|
102 |
+
)
|
103 |
+
|
104 |
+
|
105 |
+
if __name__ == "__main__":
|
106 |
+
parser = argparse.ArgumentParser()
|
107 |
+
|
108 |
+
parser.add_argument(
|
109 |
+
"--model_id",
|
110 |
+
type=str,
|
111 |
+
required=True,
|
112 |
+
help="Model identifier. Should be loadable with 🤗 Transformers",
|
113 |
+
)
|
114 |
+
parser.add_argument(
|
115 |
+
"--dataset",
|
116 |
+
type=str,
|
117 |
+
default="mozilla-foundation/common_voice_11_0",
|
118 |
+
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
|
119 |
+
)
|
120 |
+
parser.add_argument(
|
121 |
+
"--config",
|
122 |
+
type=str,
|
123 |
+
required=True,
|
124 |
+
help="Config of the dataset. *E.g.* `'en'` for the English split of Common Voice",
|
125 |
+
)
|
126 |
+
parser.add_argument(
|
127 |
+
"--split",
|
128 |
+
type=str,
|
129 |
+
default="test",
|
130 |
+
help="Split of the dataset. *E.g.* `'test'`",
|
131 |
+
)
|
132 |
+
|
133 |
+
parser.add_argument(
|
134 |
+
"--device",
|
135 |
+
type=int,
|
136 |
+
default=-1,
|
137 |
+
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
|
138 |
+
)
|
139 |
+
parser.add_argument(
|
140 |
+
"--batch_size",
|
141 |
+
type=int,
|
142 |
+
default=16,
|
143 |
+
help="Number of samples to go through each streamed batch.",
|
144 |
+
)
|
145 |
+
parser.add_argument(
|
146 |
+
"--max_eval_samples",
|
147 |
+
type=int,
|
148 |
+
default=None,
|
149 |
+
help="Number of samples to be evaluated. Put a lower number e.g. 64 for testing this script.",
|
150 |
+
)
|
151 |
+
parser.add_argument(
|
152 |
+
"--streaming",
|
153 |
+
type=bool,
|
154 |
+
default=True,
|
155 |
+
help="Choose whether you'd like to download the entire dataset or stream it during the evaluation.",
|
156 |
+
)
|
157 |
+
parser.add_argument(
|
158 |
+
"--language",
|
159 |
+
type=str,
|
160 |
+
required=True,
|
161 |
+
help="Two letter language code for the transcription language, e.g. use 'en' for English.",
|
162 |
+
)
|
163 |
+
args = parser.parse_args()
|
164 |
+
|
165 |
+
main(args)
|
src/run_speech_recognition_seq2seq_streaming.py
CHANGED
@@ -24,9 +24,6 @@ import logging
|
|
24 |
import os
|
25 |
import sys
|
26 |
import datetime
|
27 |
-
import re
|
28 |
-
import regex
|
29 |
-
import unicodedata
|
30 |
from dataclasses import dataclass, field
|
31 |
from typing import Any, Dict, List, Optional, Union, Iterable
|
32 |
|
@@ -54,6 +51,7 @@ from transformers.trainer_utils import get_last_checkpoint, is_main_process
|
|
54 |
from transformers.utils import check_min_version, send_example_telemetry
|
55 |
from transformers.utils.versions import require_version
|
56 |
|
|
|
57 |
|
58 |
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
59 |
check_min_version("4.25.0.dev0")
|
@@ -230,41 +228,6 @@ class DataTrainingArguments:
|
|
230 |
)
|
231 |
|
232 |
|
233 |
-
class BelarusianTextNormalizer:
|
234 |
-
"""
|
235 |
-
Based on transformers.models.whisper.english_normalizer.BasicTextNormalizer
|
236 |
-
but with support not to remove certain characters.
|
237 |
-
e.g. apostrophe (') - a symbol from Belarusian alphabet - was removed using BasicTextNormalizer.
|
238 |
-
"""
|
239 |
-
|
240 |
-
def __init__(self, split_letters: bool = False):
|
241 |
-
self.split_letters = split_letters
|
242 |
-
self.allowed_symbols = ("'",)
|
243 |
-
|
244 |
-
@staticmethod
|
245 |
-
def clean(s: str, allowed_symbols: Iterable[str] = None):
|
246 |
-
"""
|
247 |
-
Replace any other markers, symbols, punctuations with a space, keeping diacritics
|
248 |
-
"""
|
249 |
-
if allowed_symbols is None:
|
250 |
-
allowed_symbols = []
|
251 |
-
res = "".join(" " if unicodedata.category(c)[0] in "MSP" and c not in allowed_symbols else c
|
252 |
-
for c in unicodedata.normalize("NFKC", s))
|
253 |
-
return res
|
254 |
-
|
255 |
-
def __call__(self, s: str):
|
256 |
-
s = s.lower()
|
257 |
-
s = re.sub(r"[<\[][^>\]]*[>\]]", "", s) # remove words between brackets
|
258 |
-
s = re.sub(r"\(([^)]+?)\)", "", s) # remove words between parenthesis
|
259 |
-
s = self.clean(s, allowed_symbols=self.allowed_symbols).lower()
|
260 |
-
|
261 |
-
if self.split_letters:
|
262 |
-
s = " ".join(regex.findall(r"\X", s, regex.U))
|
263 |
-
|
264 |
-
s = re.sub(r"\s+", " ", s) # replace any successive whitespace characters with a space
|
265 |
-
|
266 |
-
return s
|
267 |
-
|
268 |
|
269 |
@dataclass
|
270 |
class DataCollatorSpeechSeq2SeqWithPadding:
|
|
|
24 |
import os
|
25 |
import sys
|
26 |
import datetime
|
|
|
|
|
|
|
27 |
from dataclasses import dataclass, field
|
28 |
from typing import Any, Dict, List, Optional, Union, Iterable
|
29 |
|
|
|
51 |
from transformers.utils import check_min_version, send_example_telemetry
|
52 |
from transformers.utils.versions import require_version
|
53 |
|
54 |
+
from belarusian_text_normalizer import BelarusianTextNormalizer
|
55 |
|
56 |
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
57 |
check_min_version("4.25.0.dev0")
|
|
|
228 |
)
|
229 |
|
230 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
|
232 |
@dataclass
|
233 |
class DataCollatorSpeechSeq2SeqWithPadding:
|