update eval code & src readme
Browse files- src/bash_runners/eval_cv11_test.sh +3 -1
- src/bash_runners/eval_fleurs_test.sh +3 -1
- src/readme.md +4 -8
- src/run_eval_whisper_streaming.py +67 -24
src/bash_runners/eval_cv11_test.sh
CHANGED
@@ -7,4 +7,6 @@ python src/run_eval_whisper_streaming.py \
|
|
7 |
--text_column="sentence" \
|
8 |
--device="0" \
|
9 |
--batch_size="32" \
|
10 |
-
--streaming="True"
|
|
|
|
|
|
7 |
--text_column="sentence" \
|
8 |
--device="0" \
|
9 |
--batch_size="32" \
|
10 |
+
--streaming="True" \
|
11 |
+
--push_to_hub="True" \
|
12 |
+
--save_predictions="True"
|
src/bash_runners/eval_fleurs_test.sh
CHANGED
@@ -7,4 +7,6 @@ python src/run_eval_whisper_streaming.py \
|
|
7 |
--text_column="transcription" \
|
8 |
--device="0" \
|
9 |
--batch_size="32" \
|
10 |
-
--streaming="True"
|
|
|
|
|
|
7 |
--text_column="transcription" \
|
8 |
--device="0" \
|
9 |
--batch_size="32" \
|
10 |
+
--streaming="True" \
|
11 |
+
--push_to_hub="True" \
|
12 |
+
--save_predictions="True"
|
src/readme.md
CHANGED
@@ -23,14 +23,6 @@ The code in this repository is a modified version of code from
|
|
23 |
--logging_steps="50"
|
24 |
--eval_steps="1000"
|
25 |
```
|
26 |
-
* on the next run:
|
27 |
-
* download the whole dataset before the launch.
|
28 |
-
this will probably save some time for data processing,
|
29 |
-
and allow to load and prepare data in a parallel fashion
|
30 |
-
* can also decrease eval batch size. currently it's probably causing GPU to wait for CPU to prepare a next batch
|
31 |
-
* perform evaluation of fine-tuned model on CommonVoice test set
|
32 |
-
* add [Whisper fine-tuning Event repo](https://github.com/huggingface/community-events/tree/main/whisper-fine-tuning-event)
|
33 |
-
to remotes and merge updates from this original event repo
|
34 |
* Learning rate:
|
35 |
* max learning rate is not the same as LR passed as a parameter to training script. it is actually lower.
|
36 |
* when resuming training, LR scheduling behaves incorrectly
|
@@ -69,6 +61,7 @@ When resuming training from existing checkpoint:
|
|
69 |
## Questions:
|
70 |
* What checkpoint (best, I guess) is saved in the `output_dir`?
|
71 |
How is it overwritten when resuming training from existing checkpoint?
|
|
|
72 |
* does `ShuffleCallback` work with StreamingDataset? it reshuffles data `on_epoch_begin()`,
|
73 |
but does StreamingDataset have any epochs?
|
74 |
* does streaming mode support parallel data load and processing?<br>
|
@@ -98,6 +91,9 @@ When resuming training from existing checkpoint:
|
|
98 |
* Log tracking in Jupyter (not working) and in bash (works as expected with `tee`)
|
99 |
* Loggers in `run_speech.....py` do not control `transformers` and `datasets` loggers.
|
100 |
can't redirect their outputs using handlers. it's better and easier to redirect output in a bash
|
|
|
|
|
|
|
101 |
* Need to set `use_cache` to False since we're using gradient checkpointing, and the two are incompatible
|
102 |
* Default Linear scheduler is used
|
103 |
* Default Adam optimizer is used
|
|
|
23 |
--logging_steps="50"
|
24 |
--eval_steps="1000"
|
25 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
* Learning rate:
|
27 |
* max learning rate is not the same as LR passed as a parameter to training script. it is actually lower.
|
28 |
* when resuming training, LR scheduling behaves incorrectly
|
|
|
61 |
## Questions:
|
62 |
* What checkpoint (best, I guess) is saved in the `output_dir`?
|
63 |
How is it overwritten when resuming training from existing checkpoint?
|
64 |
+
* why dataset loading crashes when using `num_proc > 0`?
|
65 |
* does `ShuffleCallback` work with StreamingDataset? it reshuffles data `on_epoch_begin()`,
|
66 |
but does StreamingDataset have any epochs?
|
67 |
* does streaming mode support parallel data load and processing?<br>
|
|
|
91 |
* Log tracking in Jupyter (not working) and in bash (works as expected with `tee`)
|
92 |
* Loggers in `run_speech.....py` do not control `transformers` and `datasets` loggers.
|
93 |
can't redirect their outputs using handlers. it's better and easier to redirect output in a bash
|
94 |
+
* to evaluate on `google/fleurs` dataset had to downgrade `numba` from `0.56.4` to `0.56.3`, then install `librosa`
|
95 |
+
(strange, because `librosa` should have been installed when `pip install -r ~/whisper-finetuning-be/requirements.txt`
|
96 |
+
was run) and then upgrade back to `numba==0.56.4` because couldn't `import numba` when it was `0.56.3`
|
97 |
* Need to set `use_cache` to False since we're using gradient checkpointing, and the two are incompatible
|
98 |
* Default Linear scheduler is used
|
99 |
* Default Adam optimizer is used
|
src/run_eval_whisper_streaming.py
CHANGED
@@ -2,6 +2,9 @@ import argparse
|
|
2 |
import logging
|
3 |
import sys
|
4 |
import datetime
|
|
|
|
|
|
|
5 |
|
6 |
from transformers import pipeline
|
7 |
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
|
@@ -27,7 +30,7 @@ logger.setLevel(logging.INFO)
|
|
27 |
|
28 |
|
29 |
wer_metric = evaluate.load("wer")
|
30 |
-
|
31 |
|
32 |
|
33 |
def is_target_text_in_range(ref):
|
@@ -38,18 +41,22 @@ def is_target_text_in_range(ref):
|
|
38 |
|
39 |
|
40 |
def normalise(sample, text_column: str):
|
41 |
-
sample["
|
42 |
return sample
|
43 |
|
44 |
|
45 |
-
def data(dataset):
|
46 |
for i, item in enumerate(dataset):
|
47 |
-
yield {**item["audio"], "
|
|
|
|
|
|
|
|
|
48 |
|
49 |
|
50 |
def main(args):
|
51 |
logger.info(f'running evaluation script with following parameters: {args}')
|
52 |
-
logger.info(f'using following text normalier: {
|
53 |
|
54 |
batch_size = args.batch_size
|
55 |
whisper_asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device)
|
@@ -72,40 +79,64 @@ def main(args):
|
|
72 |
# Only uncomment for debugging
|
73 |
dataset = dataset.take(args.max_eval_samples)
|
74 |
|
|
|
75 |
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
|
76 |
dataset = dataset.map(normalise, fn_kwargs=dict(text_column=args.text_column))
|
77 |
-
dataset = dataset.filter(is_target_text_in_range, input_columns=["
|
78 |
|
79 |
predictions = []
|
|
|
80 |
references = []
|
|
|
|
|
81 |
|
82 |
logger.info('running inference')
|
83 |
-
for out in whisper_asr(data(dataset), batch_size=batch_size):
|
84 |
-
predictions.append(
|
|
|
85 |
references.append(out["reference"][0])
|
|
|
|
|
86 |
|
87 |
logger.info('computing metrics')
|
88 |
-
wer = wer_metric.compute(references=
|
89 |
wer = wer * 100
|
90 |
|
91 |
logger.info('metrics computed')
|
92 |
logger.info(f'WER: {wer}')
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
|
111 |
if __name__ == "__main__":
|
@@ -171,6 +202,18 @@ if __name__ == "__main__":
|
|
171 |
required=True,
|
172 |
help="Two letter language code for the transcription language, e.g. use 'en' for English.",
|
173 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
args = parser.parse_args()
|
175 |
|
176 |
main(args)
|
|
|
2 |
import logging
|
3 |
import sys
|
4 |
import datetime
|
5 |
+
import os
|
6 |
+
|
7 |
+
import pandas as pd
|
8 |
|
9 |
from transformers import pipeline
|
10 |
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
|
|
|
30 |
|
31 |
|
32 |
wer_metric = evaluate.load("wer")
|
33 |
+
text_normalizer = BelarusianTextNormalizer()
|
34 |
|
35 |
|
36 |
def is_target_text_in_range(ref):
|
|
|
41 |
|
42 |
|
43 |
def normalise(sample, text_column: str):
|
44 |
+
sample["reference_norm"] = text_normalizer(sample[text_column])
|
45 |
return sample
|
46 |
|
47 |
|
48 |
+
def data(dataset,text_column: str):
|
49 |
for i, item in enumerate(dataset):
|
50 |
+
yield {**item["audio"], "reference_norm": item["reference_norm"], 'reference': item[text_column]}
|
51 |
+
|
52 |
+
|
53 |
+
def clean_filename(filename: str):
|
54 |
+
return filename.replace(os.path.sep, '_')
|
55 |
|
56 |
|
57 |
def main(args):
|
58 |
logger.info(f'running evaluation script with following parameters: {args}')
|
59 |
+
logger.info(f'using following text normalier: {text_normalizer}')
|
60 |
|
61 |
batch_size = args.batch_size
|
62 |
whisper_asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device)
|
|
|
79 |
# Only uncomment for debugging
|
80 |
dataset = dataset.take(args.max_eval_samples)
|
81 |
|
82 |
+
# TODO: probably no need in cast, because pipelien migh handle resampling internally. need to check
|
83 |
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
|
84 |
dataset = dataset.map(normalise, fn_kwargs=dict(text_column=args.text_column))
|
85 |
+
dataset = dataset.filter(is_target_text_in_range, input_columns=["reference_norm"])
|
86 |
|
87 |
predictions = []
|
88 |
+
predictions_norm = []
|
89 |
references = []
|
90 |
+
references_norm = []
|
91 |
+
audio_paths = []
|
92 |
|
93 |
logger.info('running inference')
|
94 |
+
for out in whisper_asr(data(dataset, text_column=args.text_column), batch_size=batch_size):
|
95 |
+
predictions.append(out["text"])
|
96 |
+
predictions_norm.append(text_normalizer(out["text"]))
|
97 |
references.append(out["reference"][0])
|
98 |
+
references_norm.append(out["reference_norm"][0])
|
99 |
+
audio_paths.append(out['path'][0])
|
100 |
|
101 |
logger.info('computing metrics')
|
102 |
+
wer = wer_metric.compute(references=references_norm, predictions=predictions_norm)
|
103 |
wer = wer * 100
|
104 |
|
105 |
logger.info('metrics computed')
|
106 |
logger.info(f'WER: {wer}')
|
107 |
|
108 |
+
if args.save_predictions is True:
|
109 |
+
preds_fp = f'preds_{args.dataset}_{args.config}_{args.split}_{now_str}.tsv'
|
110 |
+
preds_fp = clean_filename(preds_fp)
|
111 |
+
logger.info(f'saving predictions to: "{preds_fp}"')
|
112 |
+
preds_df = pd.DataFrame({
|
113 |
+
'audio_path': audio_paths,
|
114 |
+
'prediction_norm': predictions_norm, 'reference_norm': references_norm,
|
115 |
+
'prediction': predictions, 'reference': references,
|
116 |
+
})
|
117 |
+
preds_df.to_csv(preds_fp, sep='\t', index=False)
|
118 |
+
else:
|
119 |
+
logger.info('save_predictions is False. will not save predictions to a file')
|
120 |
+
|
121 |
+
if args.push_to_hub is True:
|
122 |
+
logger.info(f'updating model card and pushing to HuggingFace Hub')
|
123 |
+
evaluate.push_to_hub(
|
124 |
+
model_id=args.model_id,
|
125 |
+
|
126 |
+
metric_value=wer,
|
127 |
+
metric_type="wer",
|
128 |
+
metric_name="WER",
|
129 |
+
|
130 |
+
dataset_name=args.dataset,
|
131 |
+
dataset_type=args.dataset,
|
132 |
+
dataset_config=args.config,
|
133 |
+
dataset_split=args.split,
|
134 |
+
|
135 |
+
task_type="automatic-speech-recognition",
|
136 |
+
task_name="Automatic Speech Recognition"
|
137 |
+
)
|
138 |
+
else:
|
139 |
+
logger.info('push_to_hub is False. will not update model card and push to HuggingFace Hub')
|
140 |
|
141 |
|
142 |
if __name__ == "__main__":
|
|
|
202 |
required=True,
|
203 |
help="Two letter language code for the transcription language, e.g. use 'en' for English.",
|
204 |
)
|
205 |
+
parser.add_argument(
|
206 |
+
'--push_to_hub',
|
207 |
+
type=bool,
|
208 |
+
default=True,
|
209 |
+
help="Whether to update model card and push changes to HuggingFace Hub"
|
210 |
+
)
|
211 |
+
parser.add_argument(
|
212 |
+
'--save_predictions',
|
213 |
+
type=bool,
|
214 |
+
default=True,
|
215 |
+
help="Whether to store predictions and target transcriptions to a file"
|
216 |
+
)
|
217 |
args = parser.parse_args()
|
218 |
|
219 |
main(args)
|