File size: 2,486 Bytes
56e92ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9f5648
 
 
 
 
56e92ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9f5648
56e92ea
 
 
 
 
 
 
 
 
 
 
e9f5648
 
 
 
 
 
 
 
 
 
56e92ea
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
library_name: transformers
license: apache-2.0
base_model: alex-miller/ODABert
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: cva-flow-weighted-classifier2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# cva-flow-weighted-classifier2

This model is a fine-tuned version of [alex-miller/ODABert](https://huggingface.co/alex-miller/ODABert) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3914
- Accuracy: 0.9236
- F1: 0.9453
- Precision: 0.9694
- Recall: 0.9223

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.5521        | 1.0   | 18   | 0.3662          | 0.7986   | 0.8432 | 0.9512    | 0.7573 |
| 0.3114        | 2.0   | 36   | 0.4227          | 0.8125   | 0.8508 | 0.9872    | 0.7476 |
| 0.1924        | 3.0   | 54   | 0.2520          | 0.9167   | 0.9394 | 0.9789    | 0.9029 |
| 0.0878        | 4.0   | 72   | 0.3462          | 0.9097   | 0.9340 | 0.9787    | 0.8932 |
| 0.0506        | 5.0   | 90   | 0.3421          | 0.9028   | 0.93   | 0.9588    | 0.9029 |
| 0.0467        | 6.0   | 108  | 0.3557          | 0.9097   | 0.9347 | 0.9688    | 0.9029 |
| 0.0157        | 7.0   | 126  | 0.3753          | 0.9306   | 0.9505 | 0.9697    | 0.9320 |
| 0.0189        | 8.0   | 144  | 0.3314          | 0.9306   | 0.9495 | 0.9895    | 0.9126 |
| 0.0054        | 9.0   | 162  | 0.3842          | 0.9236   | 0.9453 | 0.9694    | 0.9223 |
| 0.0065        | 10.0  | 180  | 0.3914          | 0.9236   | 0.9453 | 0.9694    | 0.9223 |


### Framework versions

- Transformers 4.48.2
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0