--- library_name: transformers license: apache-2.0 base_model: alex-miller/ODABert tags: - generated_from_trainer model-index: - name: wb-climate-regression results: [] datasets: - alex-miller/wb-climate-percentage --- # wb-climate-regression This model is a fine-tuned version of [alex-miller/ODABert](https://huggingface.co/alex-miller/ODABert) on the [alex-miller/wb-climate-percentage](https://huggingface.co/datasets/alex-miller/wb-climate-percentage) dataset. It achieves the following results on the evaluation set: - Loss: 0.0309 ## Model description A regression model that embeds text using a fine-tuned bert-base-multilingual-uncased and uses the AutoModelForSequenceClassification class to output predicted percentage climate finance, climate adaptation finance, and climate mitigation finance. ## Intended uses & limitations Intended to regress World Bank project development objectives and abstracts. Not yet validated against project descriptions written outside of the World Bank project API V3. ## Training and evaluation data Data was collected automatically from the World Bank project API V3. For full code on how data was gathered, see: [https://github.com/akmiller01/world-bank-climate-regression/blob/main/code/wb_api_climate.py](https://github.com/akmiller01/world-bank-climate-regression/blob/main/code/wb_api_climate.py) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0722 | 1.0 | 126 | 0.0577 | | 0.0481 | 2.0 | 252 | 0.0391 | | 0.04 | 3.0 | 378 | 0.0350 | | 0.0366 | 4.0 | 504 | 0.0332 | | 0.0341 | 5.0 | 630 | 0.0323 | | 0.0323 | 6.0 | 756 | 0.0312 | | 0.0304 | 7.0 | 882 | 0.0312 | | 0.0296 | 8.0 | 1008 | 0.0310 | | 0.0281 | 9.0 | 1134 | 0.0306 | | 0.0268 | 10.0 | 1260 | 0.0310 | | 0.0261 | 11.0 | 1386 | 0.0303 | | 0.0247 | 12.0 | 1512 | 0.0305 | | 0.0243 | 13.0 | 1638 | 0.0310 | | 0.0233 | 14.0 | 1764 | 0.0306 | | 0.0221 | 15.0 | 1890 | 0.0309 | | 0.0222 | 16.0 | 2016 | 0.0307 | | 0.0216 | 17.0 | 2142 | 0.0308 | | 0.0211 | 18.0 | 2268 | 0.0312 | | 0.021 | 19.0 | 2394 | 0.0310 | | 0.0206 | 20.0 | 2520 | 0.0309 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1