File size: 3,351 Bytes
9988dd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: newsdiscourse-model-large
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# newsdiscourse-model-large
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5899
- F1: 0.1975
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 0.14 | 100 | 1.9895 | 0.0487 |
| No log | 0.28 | 200 | 2.0130 | 0.0512 |
| No log | 0.43 | 300 | 1.9527 | 0.0512 |
| No log | 0.57 | 400 | 1.9605 | 0.0487 |
| 2.0539 | 0.71 | 500 | 1.9854 | 0.0618 |
| 2.0539 | 0.85 | 600 | 1.7978 | 0.1242 |
| 2.0539 | 1.0 | 700 | 1.7291 | 0.1373 |
| 2.0539 | 1.14 | 800 | 1.9082 | 0.0487 |
| 2.0539 | 1.28 | 900 | 1.9300 | 0.0487 |
| 1.9096 | 1.42 | 1000 | 1.7186 | 0.1414 |
| 1.9096 | 1.57 | 1100 | 1.7304 | 0.1399 |
| 1.9096 | 1.71 | 1200 | 1.7281 | 0.1363 |
| 1.9096 | 1.85 | 1300 | 1.8452 | 0.0576 |
| 1.9096 | 1.99 | 1400 | 1.7180 | 0.1519 |
| 1.7842 | 2.14 | 1500 | 1.7450 | 0.1525 |
| 1.7842 | 2.28 | 1600 | 1.7752 | 0.1344 |
| 1.7842 | 2.42 | 1700 | 1.7548 | 0.1506 |
| 1.7842 | 2.56 | 1800 | 1.7185 | 0.1536 |
| 1.7842 | 2.71 | 1900 | 1.6870 | 0.1536 |
| 1.7227 | 2.85 | 2000 | 1.7336 | 0.1536 |
| 1.7227 | 2.99 | 2100 | 1.7217 | 0.1490 |
| 1.7227 | 3.13 | 2200 | 1.7213 | 0.1482 |
| 1.7227 | 3.28 | 2300 | 1.7482 | 0.1435 |
| 1.7227 | 3.42 | 2400 | 1.7559 | 0.1456 |
| 1.7441 | 3.56 | 2500 | 1.7324 | 0.1406 |
| 1.7441 | 3.7 | 2600 | 1.6977 | 0.1484 |
| 1.7441 | 3.85 | 2700 | 1.6276 | 0.1839 |
| 1.7441 | 3.99 | 2800 | 1.6109 | 0.1876 |
| 1.7441 | 4.13 | 2900 | 1.6359 | 0.2181 |
| 1.6515 | 4.27 | 3000 | 1.6463 | 0.1792 |
| 1.6515 | 4.42 | 3100 | 1.6397 | 0.1828 |
| 1.6515 | 4.56 | 3200 | 1.6189 | 0.1837 |
| 1.6515 | 4.7 | 3300 | 1.6096 | 0.1875 |
| 1.6515 | 4.84 | 3400 | 1.5904 | 0.1925 |
| 1.6003 | 4.99 | 3500 | 1.5899 | 0.1975 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
|