alex2awesome commited on
Commit
9988dd3
·
1 Parent(s): 4a7b181

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +93 -0
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - f1
7
+ model-index:
8
+ - name: newsdiscourse-model-large
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # newsdiscourse-model-large
16
+
17
+ This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 1.5899
20
+ - F1: 0.1975
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 3e-05
40
+ - train_batch_size: 1
41
+ - eval_batch_size: 1
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - num_epochs: 5.0
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss | F1 |
50
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
51
+ | No log | 0.14 | 100 | 1.9895 | 0.0487 |
52
+ | No log | 0.28 | 200 | 2.0130 | 0.0512 |
53
+ | No log | 0.43 | 300 | 1.9527 | 0.0512 |
54
+ | No log | 0.57 | 400 | 1.9605 | 0.0487 |
55
+ | 2.0539 | 0.71 | 500 | 1.9854 | 0.0618 |
56
+ | 2.0539 | 0.85 | 600 | 1.7978 | 0.1242 |
57
+ | 2.0539 | 1.0 | 700 | 1.7291 | 0.1373 |
58
+ | 2.0539 | 1.14 | 800 | 1.9082 | 0.0487 |
59
+ | 2.0539 | 1.28 | 900 | 1.9300 | 0.0487 |
60
+ | 1.9096 | 1.42 | 1000 | 1.7186 | 0.1414 |
61
+ | 1.9096 | 1.57 | 1100 | 1.7304 | 0.1399 |
62
+ | 1.9096 | 1.71 | 1200 | 1.7281 | 0.1363 |
63
+ | 1.9096 | 1.85 | 1300 | 1.8452 | 0.0576 |
64
+ | 1.9096 | 1.99 | 1400 | 1.7180 | 0.1519 |
65
+ | 1.7842 | 2.14 | 1500 | 1.7450 | 0.1525 |
66
+ | 1.7842 | 2.28 | 1600 | 1.7752 | 0.1344 |
67
+ | 1.7842 | 2.42 | 1700 | 1.7548 | 0.1506 |
68
+ | 1.7842 | 2.56 | 1800 | 1.7185 | 0.1536 |
69
+ | 1.7842 | 2.71 | 1900 | 1.6870 | 0.1536 |
70
+ | 1.7227 | 2.85 | 2000 | 1.7336 | 0.1536 |
71
+ | 1.7227 | 2.99 | 2100 | 1.7217 | 0.1490 |
72
+ | 1.7227 | 3.13 | 2200 | 1.7213 | 0.1482 |
73
+ | 1.7227 | 3.28 | 2300 | 1.7482 | 0.1435 |
74
+ | 1.7227 | 3.42 | 2400 | 1.7559 | 0.1456 |
75
+ | 1.7441 | 3.56 | 2500 | 1.7324 | 0.1406 |
76
+ | 1.7441 | 3.7 | 2600 | 1.6977 | 0.1484 |
77
+ | 1.7441 | 3.85 | 2700 | 1.6276 | 0.1839 |
78
+ | 1.7441 | 3.99 | 2800 | 1.6109 | 0.1876 |
79
+ | 1.7441 | 4.13 | 2900 | 1.6359 | 0.2181 |
80
+ | 1.6515 | 4.27 | 3000 | 1.6463 | 0.1792 |
81
+ | 1.6515 | 4.42 | 3100 | 1.6397 | 0.1828 |
82
+ | 1.6515 | 4.56 | 3200 | 1.6189 | 0.1837 |
83
+ | 1.6515 | 4.7 | 3300 | 1.6096 | 0.1875 |
84
+ | 1.6515 | 4.84 | 3400 | 1.5904 | 0.1925 |
85
+ | 1.6003 | 4.99 | 3500 | 1.5899 | 0.1975 |
86
+
87
+
88
+ ### Framework versions
89
+
90
+ - Transformers 4.30.2
91
+ - Pytorch 2.0.1+cu117
92
+ - Datasets 2.13.1
93
+ - Tokenizers 0.13.3