--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: newsdiscourse-model-large results: [] --- # newsdiscourse-model-large This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5899 - F1: 0.1975 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.14 | 100 | 1.9895 | 0.0487 | | No log | 0.28 | 200 | 2.0130 | 0.0512 | | No log | 0.43 | 300 | 1.9527 | 0.0512 | | No log | 0.57 | 400 | 1.9605 | 0.0487 | | 2.0539 | 0.71 | 500 | 1.9854 | 0.0618 | | 2.0539 | 0.85 | 600 | 1.7978 | 0.1242 | | 2.0539 | 1.0 | 700 | 1.7291 | 0.1373 | | 2.0539 | 1.14 | 800 | 1.9082 | 0.0487 | | 2.0539 | 1.28 | 900 | 1.9300 | 0.0487 | | 1.9096 | 1.42 | 1000 | 1.7186 | 0.1414 | | 1.9096 | 1.57 | 1100 | 1.7304 | 0.1399 | | 1.9096 | 1.71 | 1200 | 1.7281 | 0.1363 | | 1.9096 | 1.85 | 1300 | 1.8452 | 0.0576 | | 1.9096 | 1.99 | 1400 | 1.7180 | 0.1519 | | 1.7842 | 2.14 | 1500 | 1.7450 | 0.1525 | | 1.7842 | 2.28 | 1600 | 1.7752 | 0.1344 | | 1.7842 | 2.42 | 1700 | 1.7548 | 0.1506 | | 1.7842 | 2.56 | 1800 | 1.7185 | 0.1536 | | 1.7842 | 2.71 | 1900 | 1.6870 | 0.1536 | | 1.7227 | 2.85 | 2000 | 1.7336 | 0.1536 | | 1.7227 | 2.99 | 2100 | 1.7217 | 0.1490 | | 1.7227 | 3.13 | 2200 | 1.7213 | 0.1482 | | 1.7227 | 3.28 | 2300 | 1.7482 | 0.1435 | | 1.7227 | 3.42 | 2400 | 1.7559 | 0.1456 | | 1.7441 | 3.56 | 2500 | 1.7324 | 0.1406 | | 1.7441 | 3.7 | 2600 | 1.6977 | 0.1484 | | 1.7441 | 3.85 | 2700 | 1.6276 | 0.1839 | | 1.7441 | 3.99 | 2800 | 1.6109 | 0.1876 | | 1.7441 | 4.13 | 2900 | 1.6359 | 0.2181 | | 1.6515 | 4.27 | 3000 | 1.6463 | 0.1792 | | 1.6515 | 4.42 | 3100 | 1.6397 | 0.1828 | | 1.6515 | 4.56 | 3200 | 1.6189 | 0.1837 | | 1.6515 | 4.7 | 3300 | 1.6096 | 0.1875 | | 1.6515 | 4.84 | 3400 | 1.5904 | 0.1925 | | 1.6003 | 4.99 | 3500 | 1.5899 | 0.1975 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3