Alex Spangher
commited on
Commit
·
dc209d3
1
Parent(s):
b763a7c
- optimizer.pt +1 -1
- pytorch_model.bin +1 -1
- rng_state.pth +1 -1
- scheduler.pt +1 -1
- trainer_state.json +687 -3
optimizer.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 731622405
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de12922da6650e9a750157f2d56f18c6a6231eabfc8c0aa2da93e17480f30ee1
|
3 |
size 731622405
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 509949681
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1941dd9c551eff6459b42989c78eb6514b639b2d02202840012315447e88233
|
3 |
size 509949681
|
rng_state.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 14575
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc33da413769d37bb1e11d9c4626efbaf418efd2bff1d3b6b3ade7067311d219
|
3 |
size 14575
|
scheduler.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 627
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec7e47f7f5b0d7b1a4f2877ddbda6ecbad6a56a50f484f6701523f4b9da5906a
|
3 |
size 627
|
trainer_state.json
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
{
|
2 |
"best_metric": null,
|
3 |
"best_model_checkpoint": null,
|
4 |
-
"epoch":
|
5 |
"eval_steps": 3000,
|
6 |
-
"global_step":
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
@@ -1371,13 +1371,697 @@
|
|
1371 |
"learning_rate": 3.0013845157544496e-05,
|
1372 |
"loss": 1.1827,
|
1373 |
"step": 89500
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1374 |
}
|
1375 |
],
|
1376 |
"logging_steps": 500,
|
1377 |
"max_steps": 223905,
|
1378 |
"num_train_epochs": 5,
|
1379 |
"save_steps": 500,
|
1380 |
-
"total_flos":
|
1381 |
"trial_name": null,
|
1382 |
"trial_params": null
|
1383 |
}
|
|
|
1 |
{
|
2 |
"best_metric": null,
|
3 |
"best_model_checkpoint": null,
|
4 |
+
"epoch": 3.0,
|
5 |
"eval_steps": 3000,
|
6 |
+
"global_step": 134343,
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
|
|
1371 |
"learning_rate": 3.0013845157544496e-05,
|
1372 |
"loss": 1.1827,
|
1373 |
"step": 89500
|
1374 |
+
},
|
1375 |
+
{
|
1376 |
+
"epoch": 2.01,
|
1377 |
+
"learning_rate": 2.9902190661217926e-05,
|
1378 |
+
"loss": 0.9657,
|
1379 |
+
"step": 90000
|
1380 |
+
},
|
1381 |
+
{
|
1382 |
+
"epoch": 2.01,
|
1383 |
+
"eval_e": 0.6182643221781055,
|
1384 |
+
"eval_f1": 0.5581679626998242,
|
1385 |
+
"eval_loss": 2.8641064167022705,
|
1386 |
+
"eval_runtime": 287.6124,
|
1387 |
+
"eval_samples_per_second": 12.26,
|
1388 |
+
"eval_steps_per_second": 12.26,
|
1389 |
+
"step": 90000
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 2.02,
|
1393 |
+
"learning_rate": 2.9790536164891362e-05,
|
1394 |
+
"loss": 0.8826,
|
1395 |
+
"step": 90500
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 2.03,
|
1399 |
+
"learning_rate": 2.9678881668564795e-05,
|
1400 |
+
"loss": 0.9352,
|
1401 |
+
"step": 91000
|
1402 |
+
},
|
1403 |
+
{
|
1404 |
+
"epoch": 2.04,
|
1405 |
+
"learning_rate": 2.9567227172238225e-05,
|
1406 |
+
"loss": 0.9967,
|
1407 |
+
"step": 91500
|
1408 |
+
},
|
1409 |
+
{
|
1410 |
+
"epoch": 2.05,
|
1411 |
+
"learning_rate": 2.9455572675911658e-05,
|
1412 |
+
"loss": 0.9126,
|
1413 |
+
"step": 92000
|
1414 |
+
},
|
1415 |
+
{
|
1416 |
+
"epoch": 2.07,
|
1417 |
+
"learning_rate": 2.9343918179585094e-05,
|
1418 |
+
"loss": 0.9895,
|
1419 |
+
"step": 92500
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 2.08,
|
1423 |
+
"learning_rate": 2.9232263683258527e-05,
|
1424 |
+
"loss": 0.9691,
|
1425 |
+
"step": 93000
|
1426 |
+
},
|
1427 |
+
{
|
1428 |
+
"epoch": 2.08,
|
1429 |
+
"eval_e": 0.6154282473057289,
|
1430 |
+
"eval_f1": 0.5556482680765841,
|
1431 |
+
"eval_loss": 2.8704285621643066,
|
1432 |
+
"eval_runtime": 287.9206,
|
1433 |
+
"eval_samples_per_second": 12.246,
|
1434 |
+
"eval_steps_per_second": 12.246,
|
1435 |
+
"step": 93000
|
1436 |
+
},
|
1437 |
+
{
|
1438 |
+
"epoch": 2.09,
|
1439 |
+
"learning_rate": 2.9120609186931957e-05,
|
1440 |
+
"loss": 0.8332,
|
1441 |
+
"step": 93500
|
1442 |
+
},
|
1443 |
+
{
|
1444 |
+
"epoch": 2.1,
|
1445 |
+
"learning_rate": 2.9008954690605393e-05,
|
1446 |
+
"loss": 1.0427,
|
1447 |
+
"step": 94000
|
1448 |
+
},
|
1449 |
+
{
|
1450 |
+
"epoch": 2.11,
|
1451 |
+
"learning_rate": 2.8897300194278826e-05,
|
1452 |
+
"loss": 1.0371,
|
1453 |
+
"step": 94500
|
1454 |
+
},
|
1455 |
+
{
|
1456 |
+
"epoch": 2.12,
|
1457 |
+
"learning_rate": 2.8785645697952256e-05,
|
1458 |
+
"loss": 0.8845,
|
1459 |
+
"step": 95000
|
1460 |
+
},
|
1461 |
+
{
|
1462 |
+
"epoch": 2.13,
|
1463 |
+
"learning_rate": 2.867399120162569e-05,
|
1464 |
+
"loss": 0.8747,
|
1465 |
+
"step": 95500
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 2.14,
|
1469 |
+
"learning_rate": 2.8562336705299125e-05,
|
1470 |
+
"loss": 0.97,
|
1471 |
+
"step": 96000
|
1472 |
+
},
|
1473 |
+
{
|
1474 |
+
"epoch": 2.14,
|
1475 |
+
"eval_e": 0.6134429948950653,
|
1476 |
+
"eval_f1": 0.5550596343239774,
|
1477 |
+
"eval_loss": 2.79943585395813,
|
1478 |
+
"eval_runtime": 282.8048,
|
1479 |
+
"eval_samples_per_second": 12.468,
|
1480 |
+
"eval_steps_per_second": 12.468,
|
1481 |
+
"step": 96000
|
1482 |
+
},
|
1483 |
+
{
|
1484 |
+
"epoch": 2.15,
|
1485 |
+
"learning_rate": 2.8450682208972558e-05,
|
1486 |
+
"loss": 1.0791,
|
1487 |
+
"step": 96500
|
1488 |
+
},
|
1489 |
+
{
|
1490 |
+
"epoch": 2.17,
|
1491 |
+
"learning_rate": 2.8339027712645988e-05,
|
1492 |
+
"loss": 1.008,
|
1493 |
+
"step": 97000
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 2.18,
|
1497 |
+
"learning_rate": 2.8227373216319424e-05,
|
1498 |
+
"loss": 0.8047,
|
1499 |
+
"step": 97500
|
1500 |
+
},
|
1501 |
+
{
|
1502 |
+
"epoch": 2.19,
|
1503 |
+
"learning_rate": 2.8115718719992857e-05,
|
1504 |
+
"loss": 0.8778,
|
1505 |
+
"step": 98000
|
1506 |
+
},
|
1507 |
+
{
|
1508 |
+
"epoch": 2.2,
|
1509 |
+
"learning_rate": 2.8004064223666287e-05,
|
1510 |
+
"loss": 0.8398,
|
1511 |
+
"step": 98500
|
1512 |
+
},
|
1513 |
+
{
|
1514 |
+
"epoch": 2.21,
|
1515 |
+
"learning_rate": 2.789240972733972e-05,
|
1516 |
+
"loss": 1.0125,
|
1517 |
+
"step": 99000
|
1518 |
+
},
|
1519 |
+
{
|
1520 |
+
"epoch": 2.21,
|
1521 |
+
"eval_e": 0.6176971072036301,
|
1522 |
+
"eval_f1": 0.5549828088169888,
|
1523 |
+
"eval_loss": 2.8314826488494873,
|
1524 |
+
"eval_runtime": 283.0891,
|
1525 |
+
"eval_samples_per_second": 12.455,
|
1526 |
+
"eval_steps_per_second": 12.455,
|
1527 |
+
"step": 99000
|
1528 |
+
},
|
1529 |
+
{
|
1530 |
+
"epoch": 2.22,
|
1531 |
+
"learning_rate": 2.7780755231013156e-05,
|
1532 |
+
"loss": 0.7736,
|
1533 |
+
"step": 99500
|
1534 |
+
},
|
1535 |
+
{
|
1536 |
+
"epoch": 2.23,
|
1537 |
+
"learning_rate": 2.7669100734686586e-05,
|
1538 |
+
"loss": 0.8345,
|
1539 |
+
"step": 100000
|
1540 |
+
},
|
1541 |
+
{
|
1542 |
+
"epoch": 2.24,
|
1543 |
+
"learning_rate": 2.755744623836002e-05,
|
1544 |
+
"loss": 0.9044,
|
1545 |
+
"step": 100500
|
1546 |
+
},
|
1547 |
+
{
|
1548 |
+
"epoch": 2.26,
|
1549 |
+
"learning_rate": 2.7445791742033455e-05,
|
1550 |
+
"loss": 0.9082,
|
1551 |
+
"step": 101000
|
1552 |
+
},
|
1553 |
+
{
|
1554 |
+
"epoch": 2.27,
|
1555 |
+
"learning_rate": 2.7334137245706888e-05,
|
1556 |
+
"loss": 0.8307,
|
1557 |
+
"step": 101500
|
1558 |
+
},
|
1559 |
+
{
|
1560 |
+
"epoch": 2.28,
|
1561 |
+
"learning_rate": 2.7222482749380318e-05,
|
1562 |
+
"loss": 1.0004,
|
1563 |
+
"step": 102000
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 2.28,
|
1567 |
+
"eval_e": 0.6165626772546795,
|
1568 |
+
"eval_f1": 0.5601784958413148,
|
1569 |
+
"eval_loss": 2.6772687435150146,
|
1570 |
+
"eval_runtime": 280.257,
|
1571 |
+
"eval_samples_per_second": 12.581,
|
1572 |
+
"eval_steps_per_second": 12.581,
|
1573 |
+
"step": 102000
|
1574 |
+
},
|
1575 |
+
{
|
1576 |
+
"epoch": 2.29,
|
1577 |
+
"learning_rate": 2.711082825305375e-05,
|
1578 |
+
"loss": 0.948,
|
1579 |
+
"step": 102500
|
1580 |
+
},
|
1581 |
+
{
|
1582 |
+
"epoch": 2.3,
|
1583 |
+
"learning_rate": 2.6999173756727187e-05,
|
1584 |
+
"loss": 0.8935,
|
1585 |
+
"step": 103000
|
1586 |
+
},
|
1587 |
+
{
|
1588 |
+
"epoch": 2.31,
|
1589 |
+
"learning_rate": 2.6887519260400617e-05,
|
1590 |
+
"loss": 0.8814,
|
1591 |
+
"step": 103500
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 2.32,
|
1595 |
+
"learning_rate": 2.677586476407405e-05,
|
1596 |
+
"loss": 0.9694,
|
1597 |
+
"step": 104000
|
1598 |
+
},
|
1599 |
+
{
|
1600 |
+
"epoch": 2.33,
|
1601 |
+
"learning_rate": 2.6664210267747486e-05,
|
1602 |
+
"loss": 0.8705,
|
1603 |
+
"step": 104500
|
1604 |
+
},
|
1605 |
+
{
|
1606 |
+
"epoch": 2.34,
|
1607 |
+
"learning_rate": 2.655255577142092e-05,
|
1608 |
+
"loss": 1.0145,
|
1609 |
+
"step": 105000
|
1610 |
+
},
|
1611 |
+
{
|
1612 |
+
"epoch": 2.34,
|
1613 |
+
"eval_e": 0.5998298355076574,
|
1614 |
+
"eval_f1": 0.5481616751996528,
|
1615 |
+
"eval_loss": 2.488840341567993,
|
1616 |
+
"eval_runtime": 279.9287,
|
1617 |
+
"eval_samples_per_second": 12.596,
|
1618 |
+
"eval_steps_per_second": 12.596,
|
1619 |
+
"step": 105000
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 2.36,
|
1623 |
+
"learning_rate": 2.644090127509435e-05,
|
1624 |
+
"loss": 0.9333,
|
1625 |
+
"step": 105500
|
1626 |
+
},
|
1627 |
+
{
|
1628 |
+
"epoch": 2.37,
|
1629 |
+
"learning_rate": 2.632924677876778e-05,
|
1630 |
+
"loss": 1.1367,
|
1631 |
+
"step": 106000
|
1632 |
+
},
|
1633 |
+
{
|
1634 |
+
"epoch": 2.38,
|
1635 |
+
"learning_rate": 2.6217592282441218e-05,
|
1636 |
+
"loss": 0.9492,
|
1637 |
+
"step": 106500
|
1638 |
+
},
|
1639 |
+
{
|
1640 |
+
"epoch": 2.39,
|
1641 |
+
"learning_rate": 2.6105937786114647e-05,
|
1642 |
+
"loss": 1.0456,
|
1643 |
+
"step": 107000
|
1644 |
+
},
|
1645 |
+
{
|
1646 |
+
"epoch": 2.4,
|
1647 |
+
"learning_rate": 2.599428328978808e-05,
|
1648 |
+
"loss": 0.8105,
|
1649 |
+
"step": 107500
|
1650 |
+
},
|
1651 |
+
{
|
1652 |
+
"epoch": 2.41,
|
1653 |
+
"learning_rate": 2.5882628793461517e-05,
|
1654 |
+
"loss": 1.0848,
|
1655 |
+
"step": 108000
|
1656 |
+
},
|
1657 |
+
{
|
1658 |
+
"epoch": 2.41,
|
1659 |
+
"eval_e": 0.6089052750992626,
|
1660 |
+
"eval_f1": 0.5539872559411191,
|
1661 |
+
"eval_loss": 2.320396661758423,
|
1662 |
+
"eval_runtime": 280.0515,
|
1663 |
+
"eval_samples_per_second": 12.591,
|
1664 |
+
"eval_steps_per_second": 12.591,
|
1665 |
+
"step": 108000
|
1666 |
+
},
|
1667 |
+
{
|
1668 |
+
"epoch": 2.42,
|
1669 |
+
"learning_rate": 2.5770974297134946e-05,
|
1670 |
+
"loss": 0.9052,
|
1671 |
+
"step": 108500
|
1672 |
+
},
|
1673 |
+
{
|
1674 |
+
"epoch": 2.43,
|
1675 |
+
"learning_rate": 2.565931980080838e-05,
|
1676 |
+
"loss": 0.9562,
|
1677 |
+
"step": 109000
|
1678 |
+
},
|
1679 |
+
{
|
1680 |
+
"epoch": 2.45,
|
1681 |
+
"learning_rate": 2.554766530448181e-05,
|
1682 |
+
"loss": 0.9221,
|
1683 |
+
"step": 109500
|
1684 |
+
},
|
1685 |
+
{
|
1686 |
+
"epoch": 2.46,
|
1687 |
+
"learning_rate": 2.543601080815525e-05,
|
1688 |
+
"loss": 0.9997,
|
1689 |
+
"step": 110000
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 2.47,
|
1693 |
+
"learning_rate": 2.532435631182868e-05,
|
1694 |
+
"loss": 0.9698,
|
1695 |
+
"step": 110500
|
1696 |
+
},
|
1697 |
+
{
|
1698 |
+
"epoch": 2.48,
|
1699 |
+
"learning_rate": 2.521270181550211e-05,
|
1700 |
+
"loss": 0.9949,
|
1701 |
+
"step": 111000
|
1702 |
+
},
|
1703 |
+
{
|
1704 |
+
"epoch": 2.48,
|
1705 |
+
"eval_e": 0.6168462847419172,
|
1706 |
+
"eval_f1": 0.556568464310343,
|
1707 |
+
"eval_loss": 2.4436562061309814,
|
1708 |
+
"eval_runtime": 283.2598,
|
1709 |
+
"eval_samples_per_second": 12.448,
|
1710 |
+
"eval_steps_per_second": 12.448,
|
1711 |
+
"step": 111000
|
1712 |
+
},
|
1713 |
+
{
|
1714 |
+
"epoch": 2.49,
|
1715 |
+
"learning_rate": 2.5101047319175548e-05,
|
1716 |
+
"loss": 0.9329,
|
1717 |
+
"step": 111500
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 2.5,
|
1721 |
+
"learning_rate": 2.4989392822848977e-05,
|
1722 |
+
"loss": 0.9796,
|
1723 |
+
"step": 112000
|
1724 |
+
},
|
1725 |
+
{
|
1726 |
+
"epoch": 2.51,
|
1727 |
+
"learning_rate": 2.487773832652241e-05,
|
1728 |
+
"loss": 0.7865,
|
1729 |
+
"step": 112500
|
1730 |
+
},
|
1731 |
+
{
|
1732 |
+
"epoch": 2.52,
|
1733 |
+
"learning_rate": 2.4766083830195843e-05,
|
1734 |
+
"loss": 0.9462,
|
1735 |
+
"step": 113000
|
1736 |
+
},
|
1737 |
+
{
|
1738 |
+
"epoch": 2.53,
|
1739 |
+
"learning_rate": 2.4654429333869276e-05,
|
1740 |
+
"loss": 0.9154,
|
1741 |
+
"step": 113500
|
1742 |
+
},
|
1743 |
+
{
|
1744 |
+
"epoch": 2.55,
|
1745 |
+
"learning_rate": 2.454277483754271e-05,
|
1746 |
+
"loss": 0.9923,
|
1747 |
+
"step": 114000
|
1748 |
+
},
|
1749 |
+
{
|
1750 |
+
"epoch": 2.55,
|
1751 |
+
"eval_e": 0.6145774248440159,
|
1752 |
+
"eval_f1": 0.5539626796675543,
|
1753 |
+
"eval_loss": 2.7537660598754883,
|
1754 |
+
"eval_runtime": 286.2619,
|
1755 |
+
"eval_samples_per_second": 12.317,
|
1756 |
+
"eval_steps_per_second": 12.317,
|
1757 |
+
"step": 114000
|
1758 |
+
},
|
1759 |
+
{
|
1760 |
+
"epoch": 2.56,
|
1761 |
+
"learning_rate": 2.4431120341216142e-05,
|
1762 |
+
"loss": 0.8292,
|
1763 |
+
"step": 114500
|
1764 |
+
},
|
1765 |
+
{
|
1766 |
+
"epoch": 2.57,
|
1767 |
+
"learning_rate": 2.4319465844889575e-05,
|
1768 |
+
"loss": 0.8699,
|
1769 |
+
"step": 115000
|
1770 |
+
},
|
1771 |
+
{
|
1772 |
+
"epoch": 2.58,
|
1773 |
+
"learning_rate": 2.4207811348563008e-05,
|
1774 |
+
"loss": 0.9969,
|
1775 |
+
"step": 115500
|
1776 |
+
},
|
1777 |
+
{
|
1778 |
+
"epoch": 2.59,
|
1779 |
+
"learning_rate": 2.409615685223644e-05,
|
1780 |
+
"loss": 0.6963,
|
1781 |
+
"step": 116000
|
1782 |
+
},
|
1783 |
+
{
|
1784 |
+
"epoch": 2.6,
|
1785 |
+
"learning_rate": 2.3984502355909874e-05,
|
1786 |
+
"loss": 0.9601,
|
1787 |
+
"step": 116500
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 2.61,
|
1791 |
+
"learning_rate": 2.3872847859583307e-05,
|
1792 |
+
"loss": 1.0571,
|
1793 |
+
"step": 117000
|
1794 |
+
},
|
1795 |
+
{
|
1796 |
+
"epoch": 2.61,
|
1797 |
+
"eval_e": 0.6216676120249575,
|
1798 |
+
"eval_f1": 0.5614300304448882,
|
1799 |
+
"eval_loss": 2.4599826335906982,
|
1800 |
+
"eval_runtime": 284.3149,
|
1801 |
+
"eval_samples_per_second": 12.402,
|
1802 |
+
"eval_steps_per_second": 12.402,
|
1803 |
+
"step": 117000
|
1804 |
+
},
|
1805 |
+
{
|
1806 |
+
"epoch": 2.62,
|
1807 |
+
"learning_rate": 2.376119336325674e-05,
|
1808 |
+
"loss": 0.9524,
|
1809 |
+
"step": 117500
|
1810 |
+
},
|
1811 |
+
{
|
1812 |
+
"epoch": 2.64,
|
1813 |
+
"learning_rate": 2.3649538866930173e-05,
|
1814 |
+
"loss": 1.1019,
|
1815 |
+
"step": 118000
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 2.65,
|
1819 |
+
"learning_rate": 2.3537884370603606e-05,
|
1820 |
+
"loss": 0.8693,
|
1821 |
+
"step": 118500
|
1822 |
+
},
|
1823 |
+
{
|
1824 |
+
"epoch": 2.66,
|
1825 |
+
"learning_rate": 2.342622987427704e-05,
|
1826 |
+
"loss": 0.8238,
|
1827 |
+
"step": 119000
|
1828 |
+
},
|
1829 |
+
{
|
1830 |
+
"epoch": 2.67,
|
1831 |
+
"learning_rate": 2.3314575377950472e-05,
|
1832 |
+
"loss": 1.0947,
|
1833 |
+
"step": 119500
|
1834 |
+
},
|
1835 |
+
{
|
1836 |
+
"epoch": 2.68,
|
1837 |
+
"learning_rate": 2.3202920881623905e-05,
|
1838 |
+
"loss": 0.887,
|
1839 |
+
"step": 120000
|
1840 |
+
},
|
1841 |
+
{
|
1842 |
+
"epoch": 2.68,
|
1843 |
+
"eval_e": 0.6091888825865003,
|
1844 |
+
"eval_f1": 0.5543750338048291,
|
1845 |
+
"eval_loss": 2.853802442550659,
|
1846 |
+
"eval_runtime": 280.8484,
|
1847 |
+
"eval_samples_per_second": 12.555,
|
1848 |
+
"eval_steps_per_second": 12.555,
|
1849 |
+
"step": 120000
|
1850 |
+
},
|
1851 |
+
{
|
1852 |
+
"epoch": 2.69,
|
1853 |
+
"learning_rate": 2.3091266385297335e-05,
|
1854 |
+
"loss": 0.8148,
|
1855 |
+
"step": 120500
|
1856 |
+
},
|
1857 |
+
{
|
1858 |
+
"epoch": 2.7,
|
1859 |
+
"learning_rate": 2.297961188897077e-05,
|
1860 |
+
"loss": 0.8113,
|
1861 |
+
"step": 121000
|
1862 |
+
},
|
1863 |
+
{
|
1864 |
+
"epoch": 2.71,
|
1865 |
+
"learning_rate": 2.2867957392644204e-05,
|
1866 |
+
"loss": 1.0991,
|
1867 |
+
"step": 121500
|
1868 |
+
},
|
1869 |
+
{
|
1870 |
+
"epoch": 2.72,
|
1871 |
+
"learning_rate": 2.2756302896317637e-05,
|
1872 |
+
"loss": 0.7902,
|
1873 |
+
"step": 122000
|
1874 |
+
},
|
1875 |
+
{
|
1876 |
+
"epoch": 2.74,
|
1877 |
+
"learning_rate": 2.264464839999107e-05,
|
1878 |
+
"loss": 0.9871,
|
1879 |
+
"step": 122500
|
1880 |
+
},
|
1881 |
+
{
|
1882 |
+
"epoch": 2.75,
|
1883 |
+
"learning_rate": 2.25329939036645e-05,
|
1884 |
+
"loss": 0.861,
|
1885 |
+
"step": 123000
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 2.75,
|
1889 |
+
"eval_e": 0.6074872376630743,
|
1890 |
+
"eval_f1": 0.551903563769941,
|
1891 |
+
"eval_loss": 2.6797034740448,
|
1892 |
+
"eval_runtime": 288.8697,
|
1893 |
+
"eval_samples_per_second": 12.206,
|
1894 |
+
"eval_steps_per_second": 12.206,
|
1895 |
+
"step": 123000
|
1896 |
+
},
|
1897 |
+
{
|
1898 |
+
"epoch": 2.76,
|
1899 |
+
"learning_rate": 2.2421339407337936e-05,
|
1900 |
+
"loss": 0.8356,
|
1901 |
+
"step": 123500
|
1902 |
+
},
|
1903 |
+
{
|
1904 |
+
"epoch": 2.77,
|
1905 |
+
"learning_rate": 2.2309684911011366e-05,
|
1906 |
+
"loss": 0.9589,
|
1907 |
+
"step": 124000
|
1908 |
+
},
|
1909 |
+
{
|
1910 |
+
"epoch": 2.78,
|
1911 |
+
"learning_rate": 2.2198030414684802e-05,
|
1912 |
+
"loss": 1.1244,
|
1913 |
+
"step": 124500
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 2.79,
|
1917 |
+
"learning_rate": 2.2086375918358235e-05,
|
1918 |
+
"loss": 1.0342,
|
1919 |
+
"step": 125000
|
1920 |
+
},
|
1921 |
+
{
|
1922 |
+
"epoch": 2.8,
|
1923 |
+
"learning_rate": 2.1974721422031664e-05,
|
1924 |
+
"loss": 0.995,
|
1925 |
+
"step": 125500
|
1926 |
+
},
|
1927 |
+
{
|
1928 |
+
"epoch": 2.81,
|
1929 |
+
"learning_rate": 2.18630669257051e-05,
|
1930 |
+
"loss": 1.2528,
|
1931 |
+
"step": 126000
|
1932 |
+
},
|
1933 |
+
{
|
1934 |
+
"epoch": 2.81,
|
1935 |
+
"eval_e": 0.6213840045377198,
|
1936 |
+
"eval_f1": 0.5634895725291656,
|
1937 |
+
"eval_loss": 2.4178013801574707,
|
1938 |
+
"eval_runtime": 286.5357,
|
1939 |
+
"eval_samples_per_second": 12.306,
|
1940 |
+
"eval_steps_per_second": 12.306,
|
1941 |
+
"step": 126000
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 2.82,
|
1945 |
+
"learning_rate": 2.175141242937853e-05,
|
1946 |
+
"loss": 0.9028,
|
1947 |
+
"step": 126500
|
1948 |
+
},
|
1949 |
+
{
|
1950 |
+
"epoch": 2.84,
|
1951 |
+
"learning_rate": 2.1639757933051967e-05,
|
1952 |
+
"loss": 1.0706,
|
1953 |
+
"step": 127000
|
1954 |
+
},
|
1955 |
+
{
|
1956 |
+
"epoch": 2.85,
|
1957 |
+
"learning_rate": 2.1528103436725396e-05,
|
1958 |
+
"loss": 0.8691,
|
1959 |
+
"step": 127500
|
1960 |
+
},
|
1961 |
+
{
|
1962 |
+
"epoch": 2.86,
|
1963 |
+
"learning_rate": 2.141644894039883e-05,
|
1964 |
+
"loss": 0.8903,
|
1965 |
+
"step": 128000
|
1966 |
+
},
|
1967 |
+
{
|
1968 |
+
"epoch": 2.87,
|
1969 |
+
"learning_rate": 2.1304794444072262e-05,
|
1970 |
+
"loss": 0.7932,
|
1971 |
+
"step": 128500
|
1972 |
+
},
|
1973 |
+
{
|
1974 |
+
"epoch": 2.88,
|
1975 |
+
"learning_rate": 2.1193139947745695e-05,
|
1976 |
+
"loss": 0.8327,
|
1977 |
+
"step": 129000
|
1978 |
+
},
|
1979 |
+
{
|
1980 |
+
"epoch": 2.88,
|
1981 |
+
"eval_e": 0.6193987521270562,
|
1982 |
+
"eval_f1": 0.561697084299324,
|
1983 |
+
"eval_loss": 2.573134660720825,
|
1984 |
+
"eval_runtime": 286.0117,
|
1985 |
+
"eval_samples_per_second": 12.328,
|
1986 |
+
"eval_steps_per_second": 12.328,
|
1987 |
+
"step": 129000
|
1988 |
+
},
|
1989 |
+
{
|
1990 |
+
"epoch": 2.89,
|
1991 |
+
"learning_rate": 2.1081485451419132e-05,
|
1992 |
+
"loss": 1.0172,
|
1993 |
+
"step": 129500
|
1994 |
+
},
|
1995 |
+
{
|
1996 |
+
"epoch": 2.9,
|
1997 |
+
"learning_rate": 2.096983095509256e-05,
|
1998 |
+
"loss": 0.9395,
|
1999 |
+
"step": 130000
|
2000 |
+
},
|
2001 |
+
{
|
2002 |
+
"epoch": 2.91,
|
2003 |
+
"learning_rate": 2.0858176458765998e-05,
|
2004 |
+
"loss": 0.9068,
|
2005 |
+
"step": 130500
|
2006 |
+
},
|
2007 |
+
{
|
2008 |
+
"epoch": 2.93,
|
2009 |
+
"learning_rate": 2.0746521962439427e-05,
|
2010 |
+
"loss": 1.0099,
|
2011 |
+
"step": 131000
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"epoch": 2.94,
|
2015 |
+
"learning_rate": 2.063486746611286e-05,
|
2016 |
+
"loss": 0.9126,
|
2017 |
+
"step": 131500
|
2018 |
+
},
|
2019 |
+
{
|
2020 |
+
"epoch": 2.95,
|
2021 |
+
"learning_rate": 2.0523212969786293e-05,
|
2022 |
+
"loss": 1.0005,
|
2023 |
+
"step": 132000
|
2024 |
+
},
|
2025 |
+
{
|
2026 |
+
"epoch": 2.95,
|
2027 |
+
"eval_e": 0.6114577424844015,
|
2028 |
+
"eval_f1": 0.5556109691935686,
|
2029 |
+
"eval_loss": 2.36938214302063,
|
2030 |
+
"eval_runtime": 284.4774,
|
2031 |
+
"eval_samples_per_second": 12.395,
|
2032 |
+
"eval_steps_per_second": 12.395,
|
2033 |
+
"step": 132000
|
2034 |
+
},
|
2035 |
+
{
|
2036 |
+
"epoch": 2.96,
|
2037 |
+
"learning_rate": 2.0411558473459726e-05,
|
2038 |
+
"loss": 0.9687,
|
2039 |
+
"step": 132500
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"epoch": 2.97,
|
2043 |
+
"learning_rate": 2.0299903977133163e-05,
|
2044 |
+
"loss": 0.9334,
|
2045 |
+
"step": 133000
|
2046 |
+
},
|
2047 |
+
{
|
2048 |
+
"epoch": 2.98,
|
2049 |
+
"learning_rate": 2.0188249480806592e-05,
|
2050 |
+
"loss": 0.8237,
|
2051 |
+
"step": 133500
|
2052 |
+
},
|
2053 |
+
{
|
2054 |
+
"epoch": 2.99,
|
2055 |
+
"learning_rate": 2.0076594984480025e-05,
|
2056 |
+
"loss": 0.9511,
|
2057 |
+
"step": 134000
|
2058 |
}
|
2059 |
],
|
2060 |
"logging_steps": 500,
|
2061 |
"max_steps": 223905,
|
2062 |
"num_train_epochs": 5,
|
2063 |
"save_steps": 500,
|
2064 |
+
"total_flos": 8.88715715438306e+16,
|
2065 |
"trial_name": null,
|
2066 |
"trial_params": null
|
2067 |
}
|