--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: quote-type-sentence-model results: [] --- # quote-type-sentence-model This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) to perform sentence level classification on a news dataset. The following sentence level tags are identified: ``` 'No Quote' 'Direct Quote' 'Published Work/Press Report' 'Indirect Quote' 'Statement/Public Speech' 'Background/Narrative' 'Other' 'Proposal/Order/Law' 'Email/Social Media Post' 'Court Proceeding' 'Direct Observation' ``` It achieves the following results on the evaluation set: - Loss: 0.8795 - F1: 0.5407 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.19 | 100 | 1.1174 | 0.2831 | | No log | 0.38 | 200 | 1.1066 | 0.3356 | | No log | 0.57 | 300 | 1.0490 | 0.4126 | | No log | 0.76 | 400 | 1.0280 | 0.3778 | | 1.0973 | 0.95 | 500 | 0.9378 | 0.4492 | | 1.0973 | 1.14 | 600 | 1.0546 | 0.4650 | | 1.0973 | 1.33 | 700 | 0.9806 | 0.4619 | | 1.0973 | 1.52 | 800 | 0.8989 | 0.5176 | | 1.0973 | 1.7 | 900 | 0.9531 | 0.5078 | | 0.8155 | 1.89 | 1000 | 0.9482 | 0.4781 | | 0.8155 | 2.08 | 1100 | 0.8935 | 0.5084 | | 0.8155 | 2.27 | 1200 | 0.9059 | 0.5236 | | 0.8155 | 2.46 | 1300 | 0.9483 | 0.5127 | | 0.8155 | 2.65 | 1400 | 0.8961 | 0.5355 | | 0.6225 | 2.84 | 1500 | 0.8795 | 0.5407 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3