alexbalandi commited on
Commit
818b66b
·
1 Parent(s): 764e263

Upload PPO LunarLander-v2 trained agent, first step

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 263.40 +/- 11.32
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f17edb0f520>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f17edb0f5b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f17edb0f640>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f17edb0f6d0>", "_build": "<function ActorCriticPolicy._build at 0x7f17edb0f760>", "forward": "<function ActorCriticPolicy.forward at 0x7f17edb0f7f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f17edb0f880>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f17edb0f910>", "_predict": "<function ActorCriticPolicy._predict at 0x7f17edb0f9a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f17edb0fa30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f17edb0fac0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f17edb0fb50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f17edb07340>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 224, "num_timesteps": 4128768, "_total_timesteps": 4000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678623024670353052, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV/wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZi9ob21lL2FsZXhiYWxhbmRpL21hbWJhZm9yZ2UvZW52cy9oZl9ybC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZi9ob21lL2FsZXhiYWxhbmRpL21hbWJhZm9yZ2UvZW52cy9oZl9ybC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdRwAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAHAAAAAAAAE01Db0UCaq8rOAqPiahjjz0whi+Pf9fPQAAgD8AAIA/DaWuPcNBeLqV/gi8F5TANaPU1LpoVSu1AACAPwAAAADgrRO+wdiXP73O873XtNS+Blsmvn7QYj0AAAAAAAAAAIDGU73fvMA+eq2GvMeTpr49/jK9QulCvQAAAAAAAAAAANzOvEibhbra+rG6liAztkcuYzujr8w5AACAPwAAgD+A0zC9SBX/uhSwEDyQMg+8MFJGvGsU+LwAAIA/AACAP5plBjwptBq67cftuhE1SDUxfJ67QUQKOgAAgD8AAIA/AFgRvSkAL7purlw44XmdM802iDoWOHu3AACAPwAAgD/NCLs7Pa8Fu1AC9rtrYj48mnwEvMZsHz0AAIA/AACAPy3GPL5hgQg/GibmPV8fr75LOvy82Y+LPQAAAAAAAAAATZGwPVUTdj8F/RA+qvfMvvFk6j20eoo8AAAAAAAAAACa+Xi8H622uSoetzvkijU3sCi0upjxMjYAAIA/AACAP80xtbwp/HY5zIC/O8G9Kz3oz/y6Jve2OwAAgD8AAIA/zcRPu8P5L7rCD5u3ocbvtzLulzsXwg83AACAPwAAgD/mMQi9jz5lupdKpLq0+Ww8JpDXuUAiHbsAAIA/AACAPyZTmr1xSpw/DbLzviNyEb/PdSm8sNbDvQAAAAAAAAAA010DPj83Xj8PlhG+O1bRvv3rwj1iQJe9AAAAAAAAAACmpY29e7qmugBidjtRNEG1SYcEuviKLrQAAIA/AACAPwCZFr1IjOk77T31vRoCV74o37+9hYWRPQAAgD8AAAAAM1OEO1wrSrpHKsO6QMJsNRQ8sbvWy+A5AACAPwAAgD/Ni8s8Se57PsYw5L0k9VC+yfHevB3KN7wAAAAAAAAAACaVxb0FUZi7qq6FPIQchjyTWvE8zWtjvQAAgD8AAIA/s2RVPbjc7jrEkZS6uThfO5k01zoQ20U9AAAAAAAAAABmWRy+7dUJP/Ydcz31m/m+mX48vXuuWT0AAAAAAAAAANORJT62CAW8dmg8u9P7BTkOOWW9UkNjOgAAgD8AAIA/mtCkvBRokLoR3oS6b122tdm/g7oCj5o5AACAPwAAgD8ApPQ79qx9urvDYLmaoB60UklIu3DpgjgAAIA/AACAPzMH2TwqVic+HsvGPafdSb7EWQQ+lfHRPAAAAAAAAAAAmhlUOWaNsT81cSc82aEKv8ElbLnzVxa7AAAAAAAAAADNPmm89lwfusr4Qbo1UkQ26ajsuXoGXjkAAIA/AACAPwB1szx74vO6xTcsvMpE3zogE0S8rWH6OwAAgD8AAIA/TcIBPY/WPLqI4c45qyhmM5rPUrstpey4AACAPwAAgD/NjNA5uJaUuZ6r17rgTz+28N9Du8sm/TkAAIA/AACAP2ZCfbxS8IQ6XTPsu74gUz0xGYC77ZAnvAAAAAAAAAAAza8DPfY4CTl65687t3kePXrvn7rf1aI7AACAPwAAgD8Ak4A8e5TQNxraibrqY308ktHQOtJimLoAAAAAAAAAAACUL7wEDQc+qLNCvpyqgb7Pja29oq+EPQAAAAAAAAAAs9BZvXEtQLnYrA48BuXMtvZiW7rtB9C1AACAPwAAgD9mwDA8w8l3utX5tjzps0682YzcOQDZNL0AAAAAAACAP2Z1Oj1SsPC56vxqurHY3bU/1UI7freKOQAAgD8AAIA/GlxoPVHSFj++xCK+aQGovtxZvTyibzo8AAAAAAAAAAAzNsG8BdCUu7qj1D2cpyC+HpYgvdhagb8AAIA/AACAPwDjiLxc0wK6fpbeO08s5zjDwoe6SvJLuQAAgD8AAIA/zayivS9zkj8SB4m+f4CjvnpazL0hGki+AAAAAAAAAADN3OO6wwlNugJMKzqDPg63KUrhu84FR7kAAIA/AACAP5p/rjyPKjS6Oiisul8a9LfF0227FolFOQAAgD8AAIA/TbxavSngGLoagnm61plRtiwfJznNYr01AACAPwAAgD8WKZ0+xy11PuYJ4r41zc6+LKpXPgfEmL4AAAAAAAAAAAAuhLyFi8W5EMrhO4LqhrbSMyM71XiDtQAAgD8AAIA/7fAqPg77mT6K11m+JjHnvh61ET5zK+K9AAAAAAAAAACajKS8w+kzunoaRjum3k822R2OO+LXZroAAIA/AACAP+2PFL48iSA/vXUQPj1air4WEbe8uV6+uwAAAAAAAAAA2uUZvr+UHD8KLIM+VTawvkqWrDwNX9M9AAAAAAAAAAAaRgW9uBaQufULADkPiqK3ueGIOxIEDLgAAIA/AACAP7N2DT1c8yq6ivigu1fso7oadqA6A8q7OwAAgD8AAIA/TT97veFwjLqn1ba6EfAYNJQXRbtbMdE5AACAPwAAgD8AZGG8UkC+ufAtGziJmqIyDjjRuogUNLcAAIA/AACAP7Oaer3c9Ti8jottPUHXDLuj3Kg9jlbnOwAAgD8AAIA/ABCMuo/mU7p4AeQ6D0HyNRTG4zhOOAK6AACAPwAAgD+a9Qg8rnfEOezrn7wsJme8pu33OlJWmTwAAAAAAAAAADPmgL2Lp0k/vtbwvTAFsL4H1Ja9pSP9vQAAAAAAAAAAM0shPI9iGTmtKQQ5DVHcNThAnDuK9yK4AACAPwAAgD/Nw6K8KQRhurqQNTz7KBo2euAruwCAGzUAAIA/AACAP2bSyLvDhSK6PmVbOcld3jOvT4e72vF9uAAAgD8AAIA/GsiCvUjh9DfeNDY8LcqLO/P0drtsQQq9AAAAAAAAAAAAax69CpQ0u+vsATw7FdI85bQEvAVIej0AAIA/AACAP80C3jxIgai6zqbAOndvC7YWJDO7y8vguQAAgD8AAIA/zVrvvHG9aTjNx046Sfl1NbuwvTuw2Xi5AACAPwAAgD+aNww8jzIausQihrozhxM0oduAu/MWnTkAAIA/AACAPxogED1/h4k+SFB0vtM5f76kk6q973gBvQAAAAAAAAAAc6Cxvfb0LLqGsBm73ppttXl7jrl6SkY6AACAPwAAgD/mVSM912MyOHI6kbsScmO26h1Au03H1DUAAIA/AACAP7M6DD2o4uA+7Ze1vRLYoL4DEHw8PRoIvgAAAAAAAAAAZoKju+HKmLr2V6A76V34trZgALvmPba6AACAPwAAgD8AiIw89gxLuoWPdLnEroS0UEtKu0AWkDgAAIA/AACAP5ply7tSiP25kzIDOunZOzZabYK7ao8ZuQAAgD8AAIA/ZvpxPT3KbThAdF271PJ/vHFcmLtTaky9AAAAAAAAAAAzc7S7KTAyukpbj7mJxjW0lvOtOrlkqTgAAIA/AACAPzNZs7xI4bI3EL2kO6OYAjkBqWg76mLIugAAgD8AAIA/Zma9PMMRS7qKBV266SpetnAn+jnF/H45AACAPwAAgD8zIza8pLA/uZVeb7nFBXK5/LnkOo96wzgAAIA/AACAP5q5ZzqPbla6f1JBuoW5WzbK+OA6DT1gOQAAgD8AAIA/5go8vRQEnbqusXk6zZIRNMVovboZIo65AACAPwAAgD+avIc8XKNZujC68boe1CG2oY5iOoYZCDoAAIA/AACAP82k1jt7NpG6X5YJO3NFxThSe2Y7OrijuQAAgD8AAIA/ZsTWvBSYh7pdAx66SUGQtaeQhToDnzY5AACAPwAAgD9ma808e7aPunXMsbqJfxS0sfyfuqL3zTkAAIA/AACAPzPDITsKsU27d6izvBSx5ry2kZE86xnHPQAAgD8AAIA/ZmaiO/ZkerpIFCA4ZH5tMxZSGzo2UTe3AACAPwAAgD9mBrG6KH/pPXExQL7wvkm+Hyn2vbX92rwAAAAAAAAAABrcQj3DMT26Ut5NOcBZDTQVeRw6BudquAAAgD8AAIA/83PnvbIMmz/KlwO+gHL1vhfnML7cQiC9AAAAAAAAAAAAk1S9e9yQuktVdTr5T4c1Z54SO2ZAjrkAAIA/AACAPzOFcLwUEoC6aPedu40whThCEBC7ooklNwAAgD8AAIA/ZucFPSkAZbqIY2S6y0F9teVn2DoVxYQ5AACAPwAAgD8z65G7WTy0P7jy5r67vAC+pU6pO6BA0T0AAAAAAAAAAGZWHztIuaO65BWdu96/ArWTx+y6V2W1OgAAgD8AAIA/ACwDvOxRobnKVqY8XSonvdcY77u+Xyq9AAAAAAAAAADN2j28NGk8P9wbnb0j7cC+W7aFOV1fhr0AAAAAAAAAAE3Hf70Kp0i54adKO5phMbPn/qi5mj1tugAAgD8AAIA/M998vCkIObpak4I5HlnaM7SpS7j7mJa4AACAPwAAgD+agKE8FLiUuhuey7vSEss2HDtKOlakOLYAAIA/AACAP5p1szwtLzE+Ijx0vWmLnL7zBB29ZaWTvAAAAAAAAAAA5vMXPY/CZbj9IT07gVk9NUiF8bpOcEg0AACAPwAAgD/N7EM6CtcOOM5quzr9dmo2kht/O8iY3bkAAIA/AACAP3P6jD1Wmjg9uZQKvjoBab4QqEm9rtPEvQAAAAAAAAAAAC28vIUbmjoz/YY8QKtgPK+e1DvWzTs8AAAAAAAAAADNfIY6SAuFum12ALsf8Ca2T7hSO/HiEToAAIA/AACAP5r87DzIp8E/ukgtPqJeqj0VkQY9zqyhPQAAAAAAAAAAmhbTPOHar7hWat26iRqzs1czwTob0wM6AACAPwAAgD+mfPG9whlBP5YW07wso7O+lEAdvppvED0AAAAAAAAAAE2er72rnY4/Ykd+vjrZ5L68xt+9+7hhvQAAAAAAAAAAmnJRPcORZLrSVOO75L/oOPCBoTrDEVC4AACAPwAAgD8AkJC6rmeauJNYIDoxMqW1xCWQuw+ZO7kAAIA/AACAP6Zor70ySZg/vz6Jvhek177QyRy+nnqXvQAAAAAAAAAAs8JCvofQBT8TXrU90nKNvmqNy73ixeO8AAAAAAAAAABNBqc9j343utCWNDurVbC0oJcqulA3UroAAIA/AACAP4CkKT0puD26LqpsOizfHzkDl4C6alqQuQAAgD8AAIA/ZlWevEirmbpmR0u7X1IzPc+q0zoSuOe8AACAPwAAgD8A79S8rjGpumRRzLlFPtQ1QzyQuvs76jgAAIA/AACAP7M+Jz1cwz+6ZKwYO2wO1bWcC1y6QRHMtAAAgD8AAIA/Zgg8PEhBoLgHe587yYloPLr45Dsh4EE7AACAPwAAgD9mPE08KQQuuqoWrzuO5CO213IpO2q+ILUAAIA/AACAP2Yrl7wpjDI5EOjtO3nDtrlfhuM784QrPQAAAAAAAAAAM1WMvLhYvjoyNiQ7jhtGPZ/1TDow4wU8AAAAAAAAAABmKRA+WMOsPw8srz7T8Ne+DNxjPj7lhT0AAAAAAAAAAACU8LspmH66yChlO0AXYrh5EVI6I9yAugAAgD8AAIA/ZuoNvK4dhLq4t8Y632OLtmB8wjoG1YK1AACAPwAAgD8AAFe9wwVOui1dUDu35+A3ETh+O+aNHLoAAIA/AACAPwD2ojxcWya6yvF2vFe/8rW5/lw6knJfNQAAgD8AAIA/s+eOvcPFJ7pdrVo6hge3tZT4azsVgHy5AACAPwAAgD9tlSg+jnxmPxkgKTyzlMm+PhhMPoeFFL0AAAAAAAAAAGY+GTx73o66Fd6Ou7YEzrQdqdK5JcosNAAAgD8AAIA/Zs5au4/eTLpToF68PTeQvDZ9Qju+Rnw9AACAPwAAAABmSnq8e5iVujFLHbxNEvs70GR3O8736DwAAIA/AACAP/NPjj6pI1Q/fn55PtZyB7/rV8E+NDI3PQAAAAAAAAAA8+6XPSlcXzWHs6e6/5CcPCTIWTvAcXO8AACAPwAAgD9mK9Y9XW2TP6vFaD7qZ9y+v4Q6PqbHzD0AAAAAAAAAAM0M1rr2+De6blpyOxLbDziXFHE7gIwlugAAgD8AAIA/zT69PFyTVLriJqO7dS0At6gtljkD27c6AACAPwAAgD8z0/26aM+9Pub9+D1Mn5K+c3DvPTOsDr0AAAAAAAAAAOaiET5te0Q/FpQXvmMRnb7er6o9A767vAAAAAAAAAAAM1O4O3FNJrk+NMg7kFi9N2PqjDqguk42AACAPwAAgD8zPRC8FPiuuqWcWjtaLiU2Sj/eOVveeboAAIA/AACAP/plez7JyEw/aPC1PnyOL7/h0cQ+mJisPQAAAAAAAAAAAMIMPCkAX7ptBUy7cVwotpPTFDiYcWo6AACAPwAAgD9N2EO918NvuUuxYTpa05M1IicqOyYCiLkAAIA/AACAPyZAkj1cE3q6q3OGO1E8tbWWglS6xmSXugAAgD8AAIA/Lf8kPpDOnz/3IgQ/a8DLvoLISz6V6mI+AAAAAAAAAAANh6E95eDRPnw5lL1atsK+SH50O9r8rzwAAAAAAAAAAObTLb2F6884XvGRPPVGgTz7Cf075ttfvQAAgD8AAIA/JlCCPYNEBLwVFJa8cGSKPIY3ab3wG2c9AACAPwAAgD8AxZS9Hz23ubx7sTv8ffY2j6o+uzqr8zUAAIA/AACAP41iQb6P/1w/V5Wyvb/3t77OVi2+et4TPQAAAAAAAAAAADjYvCkgG7rFuNC55VRRN1Gq1LoDX184AACAPwAAgD8AaVY9e7TNuL4IYrocS6Y4PVgnOjYjgDkAAIA/AACAP80+kz2WrHk/Wq9jPZEC0b5Wc/M9Aje9vAAAAAAAAAAAzYhUvPZUfrpeROc6kaFptYc5Qrn5rAS6AACAPwAAgD9mZu25KYB+uuUh77kCdEC2L3QROJm+BzkAAIA/AACAP83UebvXM2+5Mvt2OnefFTS/Gc456uOQuQAAgD8AAIA/ANwCvCkoOrowPUk8wifVuAANozoxM8i3AACAPwAAgD8zAzA7C4rnPVNuSz1G3ki+kamQvbKP4bwAAAAAAAAAAGZuDr2uIcu6iIB3u/Jjgzv3K6E67WFkvAAAgD8AAIA/zUw8vVyjL7rAAws8l/XRNgK4mTnTdMM1AACAPwAAgD+t4BA+TxIrPTSPhL40B4W++GQ+vfjMHT0AAAAAAAAAAJoJ77rh/OG65TqLvOZBQr3JnzI6kqcqPgAAgD8AAAAAM7+Iu/aUBbovxEC71xyVN7JElroAHxE6AACAPwAAgD+zvnG9e5jLuobDnzxWqIu8dv6HuxKHSr0AAIA/AACAPzOhSjwV6gM+k2mCPuOOp77bvBs+xjNqvQAAAAAAAAAAMx/4O4/CVTVCv1C8W+rMPDsnDTtgskG8AACAPwAAgD/A8U6+lEWLP8M+ZL4gG6S+7JRbvqMnmL0AAAAAAAAAADNhc7wUJrI51hhNPe8ldTztX1g7RSY/OwAAgD8AAIA/mkzivKqDqD9Bnxy+YjKkvn5L4bwPvpe8AAAAAAAAAABA1PW9a9xJPwVM0T09q6a+84mFvSWSRD0AAAAAAAAAAAAwJDtcg0O6UK6eOhXEjzU6HKc6QdG1uQAAgD8AAIA/Ff+mvgRiRj99SH2+xJafvm5MiL61ht28AAAAAAAAAAAAQKI9NoGdP76uwD7Nx86+m6hkPX88Iz4AAAAAAAAAAM1g4Tx7Xp+6BVf2O8BYBjdQalg74tDzNQAAgD8AAIA/5i0EPR8tl7mwWbI7iccANw4SnLoii9C6AACAPwAAgD+m5pm9WCaaPf9TDj70qDi+q1SxPca6XzoAAAAAAAAAAGahzryuh4O6xJWVOouMLLkW3h87wmmguQAAgD8AAIA/GhcDPcMxXrpF1HS6LkLKtflugrmrEY05AACAPwAAgD9m9Be99mA8ui4UvDvbu9Q35Q8Eu8gAlzYAAIA/AACAPwAwRb3DyQi6nmf4O+wDArky6ck7/ur5twAAgD8AAIA/MwY0PYUT2rkiXIu68MEMtjc707qKLH41AACAPwAAgD8zBxs8j54mupvrVLsdgYg49Y6TuhLn5TkAAIA/AACAPzNkmL1cL2G6moDiuqZNVbVDWP66Zs4COgAAgD8AAIA/zZjVPIVjvbksYo27gHZuOLF5GrqqASY6AACAPwAAgD+aOpS8SPuRugyxqTtr8Yy1UoIQOu0Kh7QAAIA/AACAP7OhCb2PojG6amwDPNRgnbaW5/a6sHGZtQAAgD8AAIA/mtNhPSlkZLpNt8+5hZqRtmBu1TuGWQc2AACAPwAAgD8A+rO84Y6AupkNjbyg3GU8NVADO4KJHjwAAIA/AACAPzO127w9ylg48qk3ugCnlDORQVM7gwdbOQAAgD8AAIA/MwOGuoUD/7niwS0548qBtYImjLuVL0m4AACAPwAAgD8zt/g7uBarueRtqbu36pi2GHcVOiOeDTYAAIA/AACAP822yLw2Rhq8Rd91PbKjXr3WGpC96vBjvgAAgD8AAIA/TbZ4PfYMRbrKf2c6kN/iNQM10jopqoS5AACAPwAAgD/NzIA8EZzIPbxzQb0EW4++h+ulvbz4gL0AAAAAAAAAADO0B71WwRc9u/nsPY0XLr7GNi89kagOPQAAAAAAAAAAzSJgPY9Gfrpy5087hMAcOAINXLotqwW6AACAPwAAgD8zcps9w9lkuh7Ruzu9WX02nJwHumKRbzUAAIA/AACAP5rqvL2guo8/RrpWvpfos75p73G9gLROvQAAAAAAAAAATaoNvSnUNrqDXpC8dq7AO4cxFjth54G8AACAPwAAgD9mtsU84YKeug0VpLuRrJg4DtsIO9sNSzkAAIA/AACAP3NEhD2vO6A/sNdNPgka2L4X5sM9LDK6PQAAAAAAAAAAzdTKvOAxtD5FUxE+1eiTvncalD2heL49AAAAAAAAAABmM0E9CrM7Or8FLjwGmwA9O4izO7Z1NTwAAIA/AACAP5pskbzDNQm4txBEugWoCz2pNVC6eHnquwAAgD8AAIA/k28dvg/SObyXx4e7HN9GvVrLqD2tjiQ+AACAPwAAAADtqQc+yOKEP7KHvT680gS/wgakPUX7zz0AAAAAAAAAAJpsyDwpmBi6/0qeui0QLbZ41zm7kyueNQAAgD8AAIA/gEK6PR+dtLn9ZW86ureONcAbMDqGPYq5AACAPwAAgD/mFgk9OB2IuypZjLyjgRy7oWPivJglBrwAAIA/AACAPxoEZT0V2q4/AvifPgaZnb5Rpzo9+IHoPQAAAAAAAAAAZnPgPCl8KLoSdbm63dIPtnzhvDt6Ttk5AACAPwAAgD/m3U096FSAvDliJj0G1Gw82y/4ve16QD0AAIA/AACAP81pfL1cXze6xxERt+aBC7bsqhC70Do4NgAAgD8AAIA/5lFCPRZErD6LlWG+0ut7vjslDjwKY8G8AAAAAAAAAABNqU+9rm2duopRUruJVw42ln5SutAkcToAAIA/AACAPwCAarlc1wq6HoOEu81zFrZEZ4c72bucOgAAgD8AAIA/GlkRvfaUcbokhcQ7/BUoPDDRZLuj2xM9AACAPwAAgD8zbQe9XFsXumrtNDzaqkY2HLAzulYiRzUAAIA/AACAP+ZXLL24PuC5ToBIu5UPlbayBL07YOBrOgAAgD8AAIA/mv3NO+y5nTr+BS47s+s+Pa3lMTz58B8+AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiS+BLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVUwEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYkvghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.032192, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIF9UiophFXECUhpRSlIwBbJRN6AOMAXSUR0CkXPiuU2UCdX2UKGgGaAloD0MI9YJPc/IQZkCUhpRSlGgVTegDaBZHQKRgRbuc+aB1fZQoaAZoCWgPQwjll8EYEdxiQJSGlFKUaBVN6ANoFkdApGJCJZW7v3V9lChoBmgJaA9DCIUoX9BCn2RAlIaUUpRoFU3oA2gWR0CkYrSFXaJzdX2UKGgGaAloD0MI+3jou9swYUCUhpRSlGgVTegDaBZHQKRjQWgOBlN1fZQoaAZoCWgPQwjUgEHSp7VeQJSGlFKUaBVN6ANoFkdApGRyYu01InV9lChoBmgJaA9DCEzChTwCCWFAlIaUUpRoFU3oA2gWR0CkZOPNeMQ3dX2UKGgGaAloD0MIdLM/UO5aYUCUhpRSlGgVTegDaBZHQKRnEhmoR7J1fZQoaAZoCWgPQwgWvyms1DhiQJSGlFKUaBVN6ANoFkdApGdRc1O0s3V9lChoBmgJaA9DCLKd76dG0mFAlIaUUpRoFU3oA2gWR0CkaJKbSZ0CdX2UKGgGaAloD0MIsK4K1GL9X0CUhpRSlGgVTegDaBZHQKRo3OJLuhN1fZQoaAZoCWgPQwgddt8xPNBCQJSGlFKUaBVL6mgWR0CkazsQumJndX2UKGgGaAloD0MI8bkT7L/6X0CUhpRSlGgVTegDaBZHQKRs/m16Vt51fZQoaAZoCWgPQwgAAWvVriBkQJSGlFKUaBVN6ANoFkdApG+ecc2itnV9lChoBmgJaA9DCC4fSUmP4WFAlIaUUpRoFU3oA2gWR0Ckb9lsHjZMdX2UKGgGaAloD0MIEjC6vDn0XkCUhpRSlGgVTegDaBZHQKRym6Ymb9Z1fZQoaAZoCWgPQwj4iJgSyWJhQJSGlFKUaBVN6ANoFkdApHLcIiTt9nV9lChoBmgJaA9DCJbLRuf8yVxAlIaUUpRoFU3oA2gWR0CkcxcmShaldX2UKGgGaAloD0MIXmkZqffOW0CUhpRSlGgVTegDaBZHQKRzy0TlDF91fZQoaAZoCWgPQwh5HtydtV5hQJSGlFKUaBVN6ANoFkdApHWBiAlOXXV9lChoBmgJaA9DCFKazeMw9VpAlIaUUpRoFU3oA2gWR0CkdfMju8brdX2UKGgGaAloD0MIKhvWVBbvYUCUhpRSlGgVTegDaBZHQKR2ME0zj3p1fZQoaAZoCWgPQwgJwap6+URiQJSGlFKUaBVN6ANoFkdApHYyPXCj13V9lChoBmgJaA9DCIWX4NSHImBAlIaUUpRoFU3oA2gWR0CkdnE/KQq7dX2UKGgGaAloD0MI9RCN7iCCZECUhpRSlGgVTegDaBZHQKR2eOvt+kR1fZQoaAZoCWgPQwhc5nRZzDJmQJSGlFKUaBVN6ANoFkdApHbpOpKjBXV9lChoBmgJaA9DCGYwRiQKp2ZAlIaUUpRoFU3oA2gWR0Ckd+0iILw4dX2UKGgGaAloD0MIQIUjSKWrX0CUhpRSlGgVTegDaBZHQKR4KoDxLCh1fZQoaAZoCWgPQwhgdHlzOKFhQJSGlFKUaBVN6ANoFkdApHmb2tdRi3V9lChoBmgJaA9DCHhF8L+VnWFAlIaUUpRoFU3oA2gWR0CkenwEQoTgdX2UKGgGaAloD0MIMUW5NP5OY0CUhpRSlGgVTegDaBZHQKR76UMXrMV1fZQoaAZoCWgPQwhpGan31D5lQJSGlFKUaBVN6ANoFkdApHv8T+NtInV9lChoBmgJaA9DCOcaZmi8HGNAlIaUUpRoFU3oA2gWR0CkfGAiV0LddX2UKGgGaAloD0MItcL0vQZLYkCUhpRSlGgVTegDaBZHQKR8b53Tuv51fZQoaAZoCWgPQwi7XwX47r1hQJSGlFKUaBVN6ANoFkdApH1OvIOpbXV9lChoBmgJaA9DCLdgqS7g5WJAlIaUUpRoFU3oA2gWR0CkfZwZwXImdX2UKGgGaAloD0MIjUXT2clEXkCUhpRSlGgVTegDaBZHQKR9nWhAWzp1fZQoaAZoCWgPQwgo9PqTeHBkQJSGlFKUaBVN6ANoFkdApH9lF4LThHV9lChoBmgJaA9DCGw/GeNDRmRAlIaUUpRoFU3oA2gWR0Ckf3eJ53TvdX2UKGgGaAloD0MIXRYTm48uYkCUhpRSlGgVTegDaBZHQKSAivkili11fZQoaAZoCWgPQwiYM9sV+mdgQJSGlFKUaBVN6ANoFkdApICX3vhIfHV9lChoBmgJaA9DCIC3QILikV9AlIaUUpRoFU3oA2gWR0CkgemhVU++dX2UKGgGaAloD0MIf6FHjJ64ZECUhpRSlGgVTegDaBZHQKSDgHbAUL51fZQoaAZoCWgPQwjNBplkZG1kQJSGlFKUaBVN6ANoFkdApITfHim2s3V9lChoBmgJaA9DCNP4hVcSSmRAlIaUUpRoFU3oA2gWR0Ckhv2Jiy6ddX2UKGgGaAloD0MIIa0x6ISwZkCUhpRSlGgVTegDaBZHQKSInSsr/bV1fZQoaAZoCWgPQwipo+NqZN1gQJSGlFKUaBVN6ANoFkdApImFU83dbnV9lChoBmgJaA9DCLjkuFM6iGBAlIaUUpRoFU3oA2gWR0CkiqB8IAwPdX2UKGgGaAloD0MIRuo9ldMTX0CUhpRSlGgVTegDaBZHQKSLGV58jRl1fZQoaAZoCWgPQwhNTu0M0+NjQJSGlFKUaBVN6ANoFkdApIsmZE2HcnV9lChoBmgJaA9DCILHt3cNQF5AlIaUUpRoFU3oA2gWR0Cki482itaIdX2UKGgGaAloD0MI+1dWmpTqXkCUhpRSlGgVTegDaBZHQKSMDKSPluF1fZQoaAZoCWgPQwitiJroc2JhQJSGlFKUaBVN6ANoFkdApIx0DwH7g3V9lChoBmgJaA9DCKimJOvw42BAlIaUUpRoFU3oA2gWR0CkjZSX+l0pdX2UKGgGaAloD0MIjSYXY2AiY0CUhpRSlGgVTegDaBZHQKSPNVf/m1Z1fZQoaAZoCWgPQwjs20lE+NdfQJSGlFKUaBVN6ANoFkdApJBL5Kvmo3V9lChoBmgJaA9DCBCTcCGP6WVAlIaUUpRoFU3oA2gWR0CkkeLO7g89dX2UKGgGaAloD0MI6pWyDHGrXUCUhpRSlGgVTegDaBZHQKSR7rB0p3J1fZQoaAZoCWgPQwiA8nfvqFdfQJSGlFKUaBVN6ANoFkdApJLcwFkhBHV9lChoBmgJaA9DCBXikXj5p2FAlIaUUpRoFU3oA2gWR0CklJfyXlbNdX2UKGgGaAloD0MIiULLun9gXECUhpRSlGgVTegDaBZHQKSU1AN5MUR1fZQoaAZoCWgPQwhp4Ec1bMJhQJSGlFKUaBVN6ANoFkdApJVFovi97HV9lChoBmgJaA9DCM3n3O16M2FAlIaUUpRoFU3oA2gWR0Ckliv2oNutdX2UKGgGaAloD0MIzzC1pY4rYkCUhpRSlGgVTegDaBZHQKSWpWEsasJ1fZQoaAZoCWgPQwindRvUfnBfQJSGlFKUaBVN6ANoFkdApJgGWMS9NHV9lChoBmgJaA9DCGSsNv8v+2JAlIaUUpRoFU3oA2gWR0CkmRrXcxj8dX2UKGgGaAloD0MIGqiMf5+TWkCUhpRSlGgVTegDaBZHQKSZViEQGwB1fZQoaAZoCWgPQwiBCdy6m69iQJSGlFKUaBVN6ANoFkdApJmPk3juKHV9lChoBmgJaA9DCBh47j1cQF5AlIaUUpRoFU3oA2gWR0CkmZuu7pV0dX2UKGgGaAloD0MI7KUpAhwJYUCUhpRSlGgVTegDaBZHQKSaArBj4Hp1fZQoaAZoCWgPQwj6RJ4k3fFgQJSGlFKUaBVN6ANoFkdApJqwoZydWnV9lChoBmgJaA9DCCQMA5bctmRAlIaUUpRoFU3oA2gWR0Ckm1ivX9R8dX2UKGgGaAloD0MIEVMiiV6eZECUhpRSlGgVTegDaBZHQKSg23m3fAN1fZQoaAZoCWgPQwiimSfXlNhiQJSGlFKUaBVN6ANoFkdApKKusYEW7HV9lChoBmgJaA9DCDenkgEgq2ZAlIaUUpRoFU3oA2gWR0CkorUrTYukdX2UKGgGaAloD0MIKv2Es1tKZkCUhpRSlGgVTegDaBZHQKSi7Mi8nNR1fZQoaAZoCWgPQwhR3Vz8be5lQJSGlFKUaBVN6ANoFkdApKLxmGucMHV9lChoBmgJaA9DCE7U0twKnmdAlIaUUpRoFU3oA2gWR0Cko9WcJ+lTdX2UKGgGaAloD0MIwqVjzrNTZUCUhpRSlGgVTegDaBZHQKSkC7/4qPR1fZQoaAZoCWgPQwgk8l1K3W9iQJSGlFKUaBVN6ANoFkdApKQ+NxVAA3V9lChoBmgJaA9DCK8hOC7jOWRAlIaUUpRoFU3oA2gWR0CkpHV8CxNZdX2UKGgGaAloD0MI3V7SGC2QY0CUhpRSlGgVTegDaBZHQKSmN+iJwbV1fZQoaAZoCWgPQwhLBoAqbglnQJSGlFKUaBVN6ANoFkdApKciosI3SHV9lChoBmgJaA9DCGuZDMdzG2FAlIaUUpRoFU3oA2gWR0CkpyRxLkCFdX2UKGgGaAloD0MIjL/tCRKJYkCUhpRSlGgVTegDaBZHQKSocrHU+cJ1fZQoaAZoCWgPQwjT2cngKPFMQJSGlFKUaBVLvmgWR0CkqHrfDUExdX2UKGgGaAloD0MIWn9LAH4iYUCUhpRSlGgVTegDaBZHQKSpjbPhQ3x1fZQoaAZoCWgPQwg+lGjJ4zVjQJSGlFKUaBVN6ANoFkdApKprjrAxjHV9lChoBmgJaA9DCK946pEG1V9AlIaUUpRoFU3oA2gWR0CkqqU0FbFCdX2UKGgGaAloD0MIUFWhgVjDYUCUhpRSlGgVTegDaBZHQKSqr+MIeHV1fZQoaAZoCWgPQwjSUnk7QqBgQJSGlFKUaBVN6ANoFkdApKqwk7fYSXV9lChoBmgJaA9DCHBdMSM8t2RAlIaUUpRoFU3oA2gWR0Ckqtgl4TsZdX2UKGgGaAloD0MImKHxRJCNY0CUhpRSlGgVTegDaBZHQKSq4x4Y77t1fZQoaAZoCWgPQwjxn26gwMNbQJSGlFKUaBVN6ANoFkdApKzXX9R77nV9lChoBmgJaA9DCB75g4Hn7mRAlIaUUpRoFU3oA2gWR0CkrRRO1v2odX2UKGgGaAloD0MIK4cW2U4JYUCUhpRSlGgVTegDaBZHQKStQbEP1+R1fZQoaAZoCWgPQwhHyhZJO1JhQJSGlFKUaBVN6ANoFkdApK1IGW2PUHV9lChoBmgJaA9DCIl8l1KXNmJAlIaUUpRoFU3oA2gWR0CkrXRMewLWdX2UKGgGaAloD0MIiSmRRC/7YUCUhpRSlGgVTegDaBZHQKSwPrEcbR51fZQoaAZoCWgPQwgBiSZQxAZiQJSGlFKUaBVN6ANoFkdApLB7OPeYUnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 72, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV/wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZi9ob21lL2FsZXhiYWxhbmRpL21hbWJhZm9yZ2UvZW52cy9oZl9ybC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZi9ob21lL2FsZXhiYWxhbmRpL21hbWJhZm9yZ2UvZW52cy9oZl9ybC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-6.2.2-arch1-g14-1-x86_64-with-glibc2.37 # 5 SMP PREEMPT_DYNAMIC Sat, 04 Mar 2023 20:30:14 +0000", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.2", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28222af66ce046bdbe039377acd698bf33940dc72e644d4ba684ff0831f335ed
3
+ size 156752
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f17edb0f520>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f17edb0f5b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f17edb0f640>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f17edb0f6d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f17edb0f760>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f17edb0f7f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f17edb0f880>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f17edb0f910>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f17edb0f9a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f17edb0fa30>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f17edb0fac0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f17edb0fb50>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f17edb07340>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 224,
46
+ "num_timesteps": 4128768,
47
+ "_total_timesteps": 4000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678623024670353052,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWV/wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZi9ob21lL2FsZXhiYWxhbmRpL21hbWJhZm9yZ2UvZW52cy9oZl9ybC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZi9ob21lL2FsZXhiYWxhbmRpL21hbWJhZm9yZ2UvZW52cy9oZl9ybC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdRwAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAHAAAAAAAAE01Db0UCaq8rOAqPiahjjz0whi+Pf9fPQAAgD8AAIA/DaWuPcNBeLqV/gi8F5TANaPU1LpoVSu1AACAPwAAAADgrRO+wdiXP73O873XtNS+Blsmvn7QYj0AAAAAAAAAAIDGU73fvMA+eq2GvMeTpr49/jK9QulCvQAAAAAAAAAAANzOvEibhbra+rG6liAztkcuYzujr8w5AACAPwAAgD+A0zC9SBX/uhSwEDyQMg+8MFJGvGsU+LwAAIA/AACAP5plBjwptBq67cftuhE1SDUxfJ67QUQKOgAAgD8AAIA/AFgRvSkAL7purlw44XmdM802iDoWOHu3AACAPwAAgD/NCLs7Pa8Fu1AC9rtrYj48mnwEvMZsHz0AAIA/AACAPy3GPL5hgQg/GibmPV8fr75LOvy82Y+LPQAAAAAAAAAATZGwPVUTdj8F/RA+qvfMvvFk6j20eoo8AAAAAAAAAACa+Xi8H622uSoetzvkijU3sCi0upjxMjYAAIA/AACAP80xtbwp/HY5zIC/O8G9Kz3oz/y6Jve2OwAAgD8AAIA/zcRPu8P5L7rCD5u3ocbvtzLulzsXwg83AACAPwAAgD/mMQi9jz5lupdKpLq0+Ww8JpDXuUAiHbsAAIA/AACAPyZTmr1xSpw/DbLzviNyEb/PdSm8sNbDvQAAAAAAAAAA010DPj83Xj8PlhG+O1bRvv3rwj1iQJe9AAAAAAAAAACmpY29e7qmugBidjtRNEG1SYcEuviKLrQAAIA/AACAPwCZFr1IjOk77T31vRoCV74o37+9hYWRPQAAgD8AAAAAM1OEO1wrSrpHKsO6QMJsNRQ8sbvWy+A5AACAPwAAgD/Ni8s8Se57PsYw5L0k9VC+yfHevB3KN7wAAAAAAAAAACaVxb0FUZi7qq6FPIQchjyTWvE8zWtjvQAAgD8AAIA/s2RVPbjc7jrEkZS6uThfO5k01zoQ20U9AAAAAAAAAABmWRy+7dUJP/Ydcz31m/m+mX48vXuuWT0AAAAAAAAAANORJT62CAW8dmg8u9P7BTkOOWW9UkNjOgAAgD8AAIA/mtCkvBRokLoR3oS6b122tdm/g7oCj5o5AACAPwAAgD8ApPQ79qx9urvDYLmaoB60UklIu3DpgjgAAIA/AACAPzMH2TwqVic+HsvGPafdSb7EWQQ+lfHRPAAAAAAAAAAAmhlUOWaNsT81cSc82aEKv8ElbLnzVxa7AAAAAAAAAADNPmm89lwfusr4Qbo1UkQ26ajsuXoGXjkAAIA/AACAPwB1szx74vO6xTcsvMpE3zogE0S8rWH6OwAAgD8AAIA/TcIBPY/WPLqI4c45qyhmM5rPUrstpey4AACAPwAAgD/NjNA5uJaUuZ6r17rgTz+28N9Du8sm/TkAAIA/AACAP2ZCfbxS8IQ6XTPsu74gUz0xGYC77ZAnvAAAAAAAAAAAza8DPfY4CTl65687t3kePXrvn7rf1aI7AACAPwAAgD8Ak4A8e5TQNxraibrqY308ktHQOtJimLoAAAAAAAAAAACUL7wEDQc+qLNCvpyqgb7Pja29oq+EPQAAAAAAAAAAs9BZvXEtQLnYrA48BuXMtvZiW7rtB9C1AACAPwAAgD9mwDA8w8l3utX5tjzps0682YzcOQDZNL0AAAAAAACAP2Z1Oj1SsPC56vxqurHY3bU/1UI7freKOQAAgD8AAIA/GlxoPVHSFj++xCK+aQGovtxZvTyibzo8AAAAAAAAAAAzNsG8BdCUu7qj1D2cpyC+HpYgvdhagb8AAIA/AACAPwDjiLxc0wK6fpbeO08s5zjDwoe6SvJLuQAAgD8AAIA/zayivS9zkj8SB4m+f4CjvnpazL0hGki+AAAAAAAAAADN3OO6wwlNugJMKzqDPg63KUrhu84FR7kAAIA/AACAP5p/rjyPKjS6Oiisul8a9LfF0227FolFOQAAgD8AAIA/TbxavSngGLoagnm61plRtiwfJznNYr01AACAPwAAgD8WKZ0+xy11PuYJ4r41zc6+LKpXPgfEmL4AAAAAAAAAAAAuhLyFi8W5EMrhO4LqhrbSMyM71XiDtQAAgD8AAIA/7fAqPg77mT6K11m+JjHnvh61ET5zK+K9AAAAAAAAAACajKS8w+kzunoaRjum3k822R2OO+LXZroAAIA/AACAP+2PFL48iSA/vXUQPj1air4WEbe8uV6+uwAAAAAAAAAA2uUZvr+UHD8KLIM+VTawvkqWrDwNX9M9AAAAAAAAAAAaRgW9uBaQufULADkPiqK3ueGIOxIEDLgAAIA/AACAP7N2DT1c8yq6ivigu1fso7oadqA6A8q7OwAAgD8AAIA/TT97veFwjLqn1ba6EfAYNJQXRbtbMdE5AACAPwAAgD8AZGG8UkC+ufAtGziJmqIyDjjRuogUNLcAAIA/AACAP7Oaer3c9Ti8jottPUHXDLuj3Kg9jlbnOwAAgD8AAIA/ABCMuo/mU7p4AeQ6D0HyNRTG4zhOOAK6AACAPwAAgD+a9Qg8rnfEOezrn7wsJme8pu33OlJWmTwAAAAAAAAAADPmgL2Lp0k/vtbwvTAFsL4H1Ja9pSP9vQAAAAAAAAAAM0shPI9iGTmtKQQ5DVHcNThAnDuK9yK4AACAPwAAgD/Nw6K8KQRhurqQNTz7KBo2euAruwCAGzUAAIA/AACAP2bSyLvDhSK6PmVbOcld3jOvT4e72vF9uAAAgD8AAIA/GsiCvUjh9DfeNDY8LcqLO/P0drtsQQq9AAAAAAAAAAAAax69CpQ0u+vsATw7FdI85bQEvAVIej0AAIA/AACAP80C3jxIgai6zqbAOndvC7YWJDO7y8vguQAAgD8AAIA/zVrvvHG9aTjNx046Sfl1NbuwvTuw2Xi5AACAPwAAgD+aNww8jzIausQihrozhxM0oduAu/MWnTkAAIA/AACAPxogED1/h4k+SFB0vtM5f76kk6q973gBvQAAAAAAAAAAc6Cxvfb0LLqGsBm73ppttXl7jrl6SkY6AACAPwAAgD/mVSM912MyOHI6kbsScmO26h1Au03H1DUAAIA/AACAP7M6DD2o4uA+7Ze1vRLYoL4DEHw8PRoIvgAAAAAAAAAAZoKju+HKmLr2V6A76V34trZgALvmPba6AACAPwAAgD8AiIw89gxLuoWPdLnEroS0UEtKu0AWkDgAAIA/AACAP5ply7tSiP25kzIDOunZOzZabYK7ao8ZuQAAgD8AAIA/ZvpxPT3KbThAdF271PJ/vHFcmLtTaky9AAAAAAAAAAAzc7S7KTAyukpbj7mJxjW0lvOtOrlkqTgAAIA/AACAPzNZs7xI4bI3EL2kO6OYAjkBqWg76mLIugAAgD8AAIA/Zma9PMMRS7qKBV266SpetnAn+jnF/H45AACAPwAAgD8zIza8pLA/uZVeb7nFBXK5/LnkOo96wzgAAIA/AACAP5q5ZzqPbla6f1JBuoW5WzbK+OA6DT1gOQAAgD8AAIA/5go8vRQEnbqusXk6zZIRNMVovboZIo65AACAPwAAgD+avIc8XKNZujC68boe1CG2oY5iOoYZCDoAAIA/AACAP82k1jt7NpG6X5YJO3NFxThSe2Y7OrijuQAAgD8AAIA/ZsTWvBSYh7pdAx66SUGQtaeQhToDnzY5AACAPwAAgD9ma808e7aPunXMsbqJfxS0sfyfuqL3zTkAAIA/AACAPzPDITsKsU27d6izvBSx5ry2kZE86xnHPQAAgD8AAIA/ZmaiO/ZkerpIFCA4ZH5tMxZSGzo2UTe3AACAPwAAgD9mBrG6KH/pPXExQL7wvkm+Hyn2vbX92rwAAAAAAAAAABrcQj3DMT26Ut5NOcBZDTQVeRw6BudquAAAgD8AAIA/83PnvbIMmz/KlwO+gHL1vhfnML7cQiC9AAAAAAAAAAAAk1S9e9yQuktVdTr5T4c1Z54SO2ZAjrkAAIA/AACAPzOFcLwUEoC6aPedu40whThCEBC7ooklNwAAgD8AAIA/ZucFPSkAZbqIY2S6y0F9teVn2DoVxYQ5AACAPwAAgD8z65G7WTy0P7jy5r67vAC+pU6pO6BA0T0AAAAAAAAAAGZWHztIuaO65BWdu96/ArWTx+y6V2W1OgAAgD8AAIA/ACwDvOxRobnKVqY8XSonvdcY77u+Xyq9AAAAAAAAAADN2j28NGk8P9wbnb0j7cC+W7aFOV1fhr0AAAAAAAAAAE3Hf70Kp0i54adKO5phMbPn/qi5mj1tugAAgD8AAIA/M998vCkIObpak4I5HlnaM7SpS7j7mJa4AACAPwAAgD+agKE8FLiUuhuey7vSEss2HDtKOlakOLYAAIA/AACAP5p1szwtLzE+Ijx0vWmLnL7zBB29ZaWTvAAAAAAAAAAA5vMXPY/CZbj9IT07gVk9NUiF8bpOcEg0AACAPwAAgD/N7EM6CtcOOM5quzr9dmo2kht/O8iY3bkAAIA/AACAP3P6jD1Wmjg9uZQKvjoBab4QqEm9rtPEvQAAAAAAAAAAAC28vIUbmjoz/YY8QKtgPK+e1DvWzTs8AAAAAAAAAADNfIY6SAuFum12ALsf8Ca2T7hSO/HiEToAAIA/AACAP5r87DzIp8E/ukgtPqJeqj0VkQY9zqyhPQAAAAAAAAAAmhbTPOHar7hWat26iRqzs1czwTob0wM6AACAPwAAgD+mfPG9whlBP5YW07wso7O+lEAdvppvED0AAAAAAAAAAE2er72rnY4/Ykd+vjrZ5L68xt+9+7hhvQAAAAAAAAAAmnJRPcORZLrSVOO75L/oOPCBoTrDEVC4AACAPwAAgD8AkJC6rmeauJNYIDoxMqW1xCWQuw+ZO7kAAIA/AACAP6Zor70ySZg/vz6Jvhek177QyRy+nnqXvQAAAAAAAAAAs8JCvofQBT8TXrU90nKNvmqNy73ixeO8AAAAAAAAAABNBqc9j343utCWNDurVbC0oJcqulA3UroAAIA/AACAP4CkKT0puD26LqpsOizfHzkDl4C6alqQuQAAgD8AAIA/ZlWevEirmbpmR0u7X1IzPc+q0zoSuOe8AACAPwAAgD8A79S8rjGpumRRzLlFPtQ1QzyQuvs76jgAAIA/AACAP7M+Jz1cwz+6ZKwYO2wO1bWcC1y6QRHMtAAAgD8AAIA/Zgg8PEhBoLgHe587yYloPLr45Dsh4EE7AACAPwAAgD9mPE08KQQuuqoWrzuO5CO213IpO2q+ILUAAIA/AACAP2Yrl7wpjDI5EOjtO3nDtrlfhuM784QrPQAAAAAAAAAAM1WMvLhYvjoyNiQ7jhtGPZ/1TDow4wU8AAAAAAAAAABmKRA+WMOsPw8srz7T8Ne+DNxjPj7lhT0AAAAAAAAAAACU8LspmH66yChlO0AXYrh5EVI6I9yAugAAgD8AAIA/ZuoNvK4dhLq4t8Y632OLtmB8wjoG1YK1AACAPwAAgD8AAFe9wwVOui1dUDu35+A3ETh+O+aNHLoAAIA/AACAPwD2ojxcWya6yvF2vFe/8rW5/lw6knJfNQAAgD8AAIA/s+eOvcPFJ7pdrVo6hge3tZT4azsVgHy5AACAPwAAgD9tlSg+jnxmPxkgKTyzlMm+PhhMPoeFFL0AAAAAAAAAAGY+GTx73o66Fd6Ou7YEzrQdqdK5JcosNAAAgD8AAIA/Zs5au4/eTLpToF68PTeQvDZ9Qju+Rnw9AACAPwAAAABmSnq8e5iVujFLHbxNEvs70GR3O8736DwAAIA/AACAP/NPjj6pI1Q/fn55PtZyB7/rV8E+NDI3PQAAAAAAAAAA8+6XPSlcXzWHs6e6/5CcPCTIWTvAcXO8AACAPwAAgD9mK9Y9XW2TP6vFaD7qZ9y+v4Q6PqbHzD0AAAAAAAAAAM0M1rr2+De6blpyOxLbDziXFHE7gIwlugAAgD8AAIA/zT69PFyTVLriJqO7dS0At6gtljkD27c6AACAPwAAgD8z0/26aM+9Pub9+D1Mn5K+c3DvPTOsDr0AAAAAAAAAAOaiET5te0Q/FpQXvmMRnb7er6o9A767vAAAAAAAAAAAM1O4O3FNJrk+NMg7kFi9N2PqjDqguk42AACAPwAAgD8zPRC8FPiuuqWcWjtaLiU2Sj/eOVveeboAAIA/AACAP/plez7JyEw/aPC1PnyOL7/h0cQ+mJisPQAAAAAAAAAAAMIMPCkAX7ptBUy7cVwotpPTFDiYcWo6AACAPwAAgD9N2EO918NvuUuxYTpa05M1IicqOyYCiLkAAIA/AACAPyZAkj1cE3q6q3OGO1E8tbWWglS6xmSXugAAgD8AAIA/Lf8kPpDOnz/3IgQ/a8DLvoLISz6V6mI+AAAAAAAAAAANh6E95eDRPnw5lL1atsK+SH50O9r8rzwAAAAAAAAAAObTLb2F6884XvGRPPVGgTz7Cf075ttfvQAAgD8AAIA/JlCCPYNEBLwVFJa8cGSKPIY3ab3wG2c9AACAPwAAgD8AxZS9Hz23ubx7sTv8ffY2j6o+uzqr8zUAAIA/AACAP41iQb6P/1w/V5Wyvb/3t77OVi2+et4TPQAAAAAAAAAAADjYvCkgG7rFuNC55VRRN1Gq1LoDX184AACAPwAAgD8AaVY9e7TNuL4IYrocS6Y4PVgnOjYjgDkAAIA/AACAP80+kz2WrHk/Wq9jPZEC0b5Wc/M9Aje9vAAAAAAAAAAAzYhUvPZUfrpeROc6kaFptYc5Qrn5rAS6AACAPwAAgD9mZu25KYB+uuUh77kCdEC2L3QROJm+BzkAAIA/AACAP83UebvXM2+5Mvt2OnefFTS/Gc456uOQuQAAgD8AAIA/ANwCvCkoOrowPUk8wifVuAANozoxM8i3AACAPwAAgD8zAzA7C4rnPVNuSz1G3ki+kamQvbKP4bwAAAAAAAAAAGZuDr2uIcu6iIB3u/Jjgzv3K6E67WFkvAAAgD8AAIA/zUw8vVyjL7rAAws8l/XRNgK4mTnTdMM1AACAPwAAgD+t4BA+TxIrPTSPhL40B4W++GQ+vfjMHT0AAAAAAAAAAJoJ77rh/OG65TqLvOZBQr3JnzI6kqcqPgAAgD8AAAAAM7+Iu/aUBbovxEC71xyVN7JElroAHxE6AACAPwAAgD+zvnG9e5jLuobDnzxWqIu8dv6HuxKHSr0AAIA/AACAPzOhSjwV6gM+k2mCPuOOp77bvBs+xjNqvQAAAAAAAAAAMx/4O4/CVTVCv1C8W+rMPDsnDTtgskG8AACAPwAAgD/A8U6+lEWLP8M+ZL4gG6S+7JRbvqMnmL0AAAAAAAAAADNhc7wUJrI51hhNPe8ldTztX1g7RSY/OwAAgD8AAIA/mkzivKqDqD9Bnxy+YjKkvn5L4bwPvpe8AAAAAAAAAABA1PW9a9xJPwVM0T09q6a+84mFvSWSRD0AAAAAAAAAAAAwJDtcg0O6UK6eOhXEjzU6HKc6QdG1uQAAgD8AAIA/Ff+mvgRiRj99SH2+xJafvm5MiL61ht28AAAAAAAAAAAAQKI9NoGdP76uwD7Nx86+m6hkPX88Iz4AAAAAAAAAAM1g4Tx7Xp+6BVf2O8BYBjdQalg74tDzNQAAgD8AAIA/5i0EPR8tl7mwWbI7iccANw4SnLoii9C6AACAPwAAgD+m5pm9WCaaPf9TDj70qDi+q1SxPca6XzoAAAAAAAAAAGahzryuh4O6xJWVOouMLLkW3h87wmmguQAAgD8AAIA/GhcDPcMxXrpF1HS6LkLKtflugrmrEY05AACAPwAAgD9m9Be99mA8ui4UvDvbu9Q35Q8Eu8gAlzYAAIA/AACAPwAwRb3DyQi6nmf4O+wDArky6ck7/ur5twAAgD8AAIA/MwY0PYUT2rkiXIu68MEMtjc707qKLH41AACAPwAAgD8zBxs8j54mupvrVLsdgYg49Y6TuhLn5TkAAIA/AACAPzNkmL1cL2G6moDiuqZNVbVDWP66Zs4COgAAgD8AAIA/zZjVPIVjvbksYo27gHZuOLF5GrqqASY6AACAPwAAgD+aOpS8SPuRugyxqTtr8Yy1UoIQOu0Kh7QAAIA/AACAP7OhCb2PojG6amwDPNRgnbaW5/a6sHGZtQAAgD8AAIA/mtNhPSlkZLpNt8+5hZqRtmBu1TuGWQc2AACAPwAAgD8A+rO84Y6AupkNjbyg3GU8NVADO4KJHjwAAIA/AACAPzO127w9ylg48qk3ugCnlDORQVM7gwdbOQAAgD8AAIA/MwOGuoUD/7niwS0548qBtYImjLuVL0m4AACAPwAAgD8zt/g7uBarueRtqbu36pi2GHcVOiOeDTYAAIA/AACAP822yLw2Rhq8Rd91PbKjXr3WGpC96vBjvgAAgD8AAIA/TbZ4PfYMRbrKf2c6kN/iNQM10jopqoS5AACAPwAAgD/NzIA8EZzIPbxzQb0EW4++h+ulvbz4gL0AAAAAAAAAADO0B71WwRc9u/nsPY0XLr7GNi89kagOPQAAAAAAAAAAzSJgPY9Gfrpy5087hMAcOAINXLotqwW6AACAPwAAgD8zcps9w9lkuh7Ruzu9WX02nJwHumKRbzUAAIA/AACAP5rqvL2guo8/RrpWvpfos75p73G9gLROvQAAAAAAAAAATaoNvSnUNrqDXpC8dq7AO4cxFjth54G8AACAPwAAgD9mtsU84YKeug0VpLuRrJg4DtsIO9sNSzkAAIA/AACAP3NEhD2vO6A/sNdNPgka2L4X5sM9LDK6PQAAAAAAAAAAzdTKvOAxtD5FUxE+1eiTvncalD2heL49AAAAAAAAAABmM0E9CrM7Or8FLjwGmwA9O4izO7Z1NTwAAIA/AACAP5pskbzDNQm4txBEugWoCz2pNVC6eHnquwAAgD8AAIA/k28dvg/SObyXx4e7HN9GvVrLqD2tjiQ+AACAPwAAAADtqQc+yOKEP7KHvT680gS/wgakPUX7zz0AAAAAAAAAAJpsyDwpmBi6/0qeui0QLbZ41zm7kyueNQAAgD8AAIA/gEK6PR+dtLn9ZW86ureONcAbMDqGPYq5AACAPwAAgD/mFgk9OB2IuypZjLyjgRy7oWPivJglBrwAAIA/AACAPxoEZT0V2q4/AvifPgaZnb5Rpzo9+IHoPQAAAAAAAAAAZnPgPCl8KLoSdbm63dIPtnzhvDt6Ttk5AACAPwAAgD/m3U096FSAvDliJj0G1Gw82y/4ve16QD0AAIA/AACAP81pfL1cXze6xxERt+aBC7bsqhC70Do4NgAAgD8AAIA/5lFCPRZErD6LlWG+0ut7vjslDjwKY8G8AAAAAAAAAABNqU+9rm2duopRUruJVw42ln5SutAkcToAAIA/AACAPwCAarlc1wq6HoOEu81zFrZEZ4c72bucOgAAgD8AAIA/GlkRvfaUcbokhcQ7/BUoPDDRZLuj2xM9AACAPwAAgD8zbQe9XFsXumrtNDzaqkY2HLAzulYiRzUAAIA/AACAP+ZXLL24PuC5ToBIu5UPlbayBL07YOBrOgAAgD8AAIA/mv3NO+y5nTr+BS47s+s+Pa3lMTz58B8+AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiS+BLCIaUjAFDlHSUUpQu"
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVUwEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYkvghZSMAUOUdJRSlC4="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.032192,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIF9UiophFXECUhpRSlIwBbJRN6AOMAXSUR0CkXPiuU2UCdX2UKGgGaAloD0MI9YJPc/IQZkCUhpRSlGgVTegDaBZHQKRgRbuc+aB1fZQoaAZoCWgPQwjll8EYEdxiQJSGlFKUaBVN6ANoFkdApGJCJZW7v3V9lChoBmgJaA9DCIUoX9BCn2RAlIaUUpRoFU3oA2gWR0CkYrSFXaJzdX2UKGgGaAloD0MI+3jou9swYUCUhpRSlGgVTegDaBZHQKRjQWgOBlN1fZQoaAZoCWgPQwjUgEHSp7VeQJSGlFKUaBVN6ANoFkdApGRyYu01InV9lChoBmgJaA9DCEzChTwCCWFAlIaUUpRoFU3oA2gWR0CkZOPNeMQ3dX2UKGgGaAloD0MIdLM/UO5aYUCUhpRSlGgVTegDaBZHQKRnEhmoR7J1fZQoaAZoCWgPQwgWvyms1DhiQJSGlFKUaBVN6ANoFkdApGdRc1O0s3V9lChoBmgJaA9DCLKd76dG0mFAlIaUUpRoFU3oA2gWR0CkaJKbSZ0CdX2UKGgGaAloD0MIsK4K1GL9X0CUhpRSlGgVTegDaBZHQKRo3OJLuhN1fZQoaAZoCWgPQwgddt8xPNBCQJSGlFKUaBVL6mgWR0CkazsQumJndX2UKGgGaAloD0MI8bkT7L/6X0CUhpRSlGgVTegDaBZHQKRs/m16Vt51fZQoaAZoCWgPQwgAAWvVriBkQJSGlFKUaBVN6ANoFkdApG+ecc2itnV9lChoBmgJaA9DCC4fSUmP4WFAlIaUUpRoFU3oA2gWR0Ckb9lsHjZMdX2UKGgGaAloD0MIEjC6vDn0XkCUhpRSlGgVTegDaBZHQKRym6Ymb9Z1fZQoaAZoCWgPQwj4iJgSyWJhQJSGlFKUaBVN6ANoFkdApHLcIiTt9nV9lChoBmgJaA9DCJbLRuf8yVxAlIaUUpRoFU3oA2gWR0CkcxcmShaldX2UKGgGaAloD0MIXmkZqffOW0CUhpRSlGgVTegDaBZHQKRzy0TlDF91fZQoaAZoCWgPQwh5HtydtV5hQJSGlFKUaBVN6ANoFkdApHWBiAlOXXV9lChoBmgJaA9DCFKazeMw9VpAlIaUUpRoFU3oA2gWR0CkdfMju8brdX2UKGgGaAloD0MIKhvWVBbvYUCUhpRSlGgVTegDaBZHQKR2ME0zj3p1fZQoaAZoCWgPQwgJwap6+URiQJSGlFKUaBVN6ANoFkdApHYyPXCj13V9lChoBmgJaA9DCIWX4NSHImBAlIaUUpRoFU3oA2gWR0CkdnE/KQq7dX2UKGgGaAloD0MI9RCN7iCCZECUhpRSlGgVTegDaBZHQKR2eOvt+kR1fZQoaAZoCWgPQwhc5nRZzDJmQJSGlFKUaBVN6ANoFkdApHbpOpKjBXV9lChoBmgJaA9DCGYwRiQKp2ZAlIaUUpRoFU3oA2gWR0Ckd+0iILw4dX2UKGgGaAloD0MIQIUjSKWrX0CUhpRSlGgVTegDaBZHQKR4KoDxLCh1fZQoaAZoCWgPQwhgdHlzOKFhQJSGlFKUaBVN6ANoFkdApHmb2tdRi3V9lChoBmgJaA9DCHhF8L+VnWFAlIaUUpRoFU3oA2gWR0CkenwEQoTgdX2UKGgGaAloD0MIMUW5NP5OY0CUhpRSlGgVTegDaBZHQKR76UMXrMV1fZQoaAZoCWgPQwhpGan31D5lQJSGlFKUaBVN6ANoFkdApHv8T+NtInV9lChoBmgJaA9DCOcaZmi8HGNAlIaUUpRoFU3oA2gWR0CkfGAiV0LddX2UKGgGaAloD0MItcL0vQZLYkCUhpRSlGgVTegDaBZHQKR8b53Tuv51fZQoaAZoCWgPQwi7XwX47r1hQJSGlFKUaBVN6ANoFkdApH1OvIOpbXV9lChoBmgJaA9DCLdgqS7g5WJAlIaUUpRoFU3oA2gWR0CkfZwZwXImdX2UKGgGaAloD0MIjUXT2clEXkCUhpRSlGgVTegDaBZHQKR9nWhAWzp1fZQoaAZoCWgPQwgo9PqTeHBkQJSGlFKUaBVN6ANoFkdApH9lF4LThHV9lChoBmgJaA9DCGw/GeNDRmRAlIaUUpRoFU3oA2gWR0Ckf3eJ53TvdX2UKGgGaAloD0MIXRYTm48uYkCUhpRSlGgVTegDaBZHQKSAivkili11fZQoaAZoCWgPQwiYM9sV+mdgQJSGlFKUaBVN6ANoFkdApICX3vhIfHV9lChoBmgJaA9DCIC3QILikV9AlIaUUpRoFU3oA2gWR0CkgemhVU++dX2UKGgGaAloD0MIf6FHjJ64ZECUhpRSlGgVTegDaBZHQKSDgHbAUL51fZQoaAZoCWgPQwjNBplkZG1kQJSGlFKUaBVN6ANoFkdApITfHim2s3V9lChoBmgJaA9DCNP4hVcSSmRAlIaUUpRoFU3oA2gWR0Ckhv2Jiy6ddX2UKGgGaAloD0MIIa0x6ISwZkCUhpRSlGgVTegDaBZHQKSInSsr/bV1fZQoaAZoCWgPQwipo+NqZN1gQJSGlFKUaBVN6ANoFkdApImFU83dbnV9lChoBmgJaA9DCLjkuFM6iGBAlIaUUpRoFU3oA2gWR0CkiqB8IAwPdX2UKGgGaAloD0MIRuo9ldMTX0CUhpRSlGgVTegDaBZHQKSLGV58jRl1fZQoaAZoCWgPQwhNTu0M0+NjQJSGlFKUaBVN6ANoFkdApIsmZE2HcnV9lChoBmgJaA9DCILHt3cNQF5AlIaUUpRoFU3oA2gWR0Cki482itaIdX2UKGgGaAloD0MI+1dWmpTqXkCUhpRSlGgVTegDaBZHQKSMDKSPluF1fZQoaAZoCWgPQwitiJroc2JhQJSGlFKUaBVN6ANoFkdApIx0DwH7g3V9lChoBmgJaA9DCKimJOvw42BAlIaUUpRoFU3oA2gWR0CkjZSX+l0pdX2UKGgGaAloD0MIjSYXY2AiY0CUhpRSlGgVTegDaBZHQKSPNVf/m1Z1fZQoaAZoCWgPQwjs20lE+NdfQJSGlFKUaBVN6ANoFkdApJBL5Kvmo3V9lChoBmgJaA9DCBCTcCGP6WVAlIaUUpRoFU3oA2gWR0CkkeLO7g89dX2UKGgGaAloD0MI6pWyDHGrXUCUhpRSlGgVTegDaBZHQKSR7rB0p3J1fZQoaAZoCWgPQwiA8nfvqFdfQJSGlFKUaBVN6ANoFkdApJLcwFkhBHV9lChoBmgJaA9DCBXikXj5p2FAlIaUUpRoFU3oA2gWR0CklJfyXlbNdX2UKGgGaAloD0MIiULLun9gXECUhpRSlGgVTegDaBZHQKSU1AN5MUR1fZQoaAZoCWgPQwhp4Ec1bMJhQJSGlFKUaBVN6ANoFkdApJVFovi97HV9lChoBmgJaA9DCM3n3O16M2FAlIaUUpRoFU3oA2gWR0Ckliv2oNutdX2UKGgGaAloD0MIzzC1pY4rYkCUhpRSlGgVTegDaBZHQKSWpWEsasJ1fZQoaAZoCWgPQwindRvUfnBfQJSGlFKUaBVN6ANoFkdApJgGWMS9NHV9lChoBmgJaA9DCGSsNv8v+2JAlIaUUpRoFU3oA2gWR0CkmRrXcxj8dX2UKGgGaAloD0MIGqiMf5+TWkCUhpRSlGgVTegDaBZHQKSZViEQGwB1fZQoaAZoCWgPQwiBCdy6m69iQJSGlFKUaBVN6ANoFkdApJmPk3juKHV9lChoBmgJaA9DCBh47j1cQF5AlIaUUpRoFU3oA2gWR0CkmZuu7pV0dX2UKGgGaAloD0MI7KUpAhwJYUCUhpRSlGgVTegDaBZHQKSaArBj4Hp1fZQoaAZoCWgPQwj6RJ4k3fFgQJSGlFKUaBVN6ANoFkdApJqwoZydWnV9lChoBmgJaA9DCCQMA5bctmRAlIaUUpRoFU3oA2gWR0Ckm1ivX9R8dX2UKGgGaAloD0MIEVMiiV6eZECUhpRSlGgVTegDaBZHQKSg23m3fAN1fZQoaAZoCWgPQwiimSfXlNhiQJSGlFKUaBVN6ANoFkdApKKusYEW7HV9lChoBmgJaA9DCDenkgEgq2ZAlIaUUpRoFU3oA2gWR0CkorUrTYukdX2UKGgGaAloD0MIKv2Es1tKZkCUhpRSlGgVTegDaBZHQKSi7Mi8nNR1fZQoaAZoCWgPQwhR3Vz8be5lQJSGlFKUaBVN6ANoFkdApKLxmGucMHV9lChoBmgJaA9DCE7U0twKnmdAlIaUUpRoFU3oA2gWR0Cko9WcJ+lTdX2UKGgGaAloD0MIwqVjzrNTZUCUhpRSlGgVTegDaBZHQKSkC7/4qPR1fZQoaAZoCWgPQwgk8l1K3W9iQJSGlFKUaBVN6ANoFkdApKQ+NxVAA3V9lChoBmgJaA9DCK8hOC7jOWRAlIaUUpRoFU3oA2gWR0CkpHV8CxNZdX2UKGgGaAloD0MI3V7SGC2QY0CUhpRSlGgVTegDaBZHQKSmN+iJwbV1fZQoaAZoCWgPQwhLBoAqbglnQJSGlFKUaBVN6ANoFkdApKciosI3SHV9lChoBmgJaA9DCGuZDMdzG2FAlIaUUpRoFU3oA2gWR0CkpyRxLkCFdX2UKGgGaAloD0MIjL/tCRKJYkCUhpRSlGgVTegDaBZHQKSocrHU+cJ1fZQoaAZoCWgPQwjT2cngKPFMQJSGlFKUaBVLvmgWR0CkqHrfDUExdX2UKGgGaAloD0MIWn9LAH4iYUCUhpRSlGgVTegDaBZHQKSpjbPhQ3x1fZQoaAZoCWgPQwg+lGjJ4zVjQJSGlFKUaBVN6ANoFkdApKprjrAxjHV9lChoBmgJaA9DCK946pEG1V9AlIaUUpRoFU3oA2gWR0CkqqU0FbFCdX2UKGgGaAloD0MIUFWhgVjDYUCUhpRSlGgVTegDaBZHQKSqr+MIeHV1fZQoaAZoCWgPQwjSUnk7QqBgQJSGlFKUaBVN6ANoFkdApKqwk7fYSXV9lChoBmgJaA9DCHBdMSM8t2RAlIaUUpRoFU3oA2gWR0Ckqtgl4TsZdX2UKGgGaAloD0MImKHxRJCNY0CUhpRSlGgVTegDaBZHQKSq4x4Y77t1fZQoaAZoCWgPQwjxn26gwMNbQJSGlFKUaBVN6ANoFkdApKzXX9R77nV9lChoBmgJaA9DCB75g4Hn7mRAlIaUUpRoFU3oA2gWR0CkrRRO1v2odX2UKGgGaAloD0MIK4cW2U4JYUCUhpRSlGgVTegDaBZHQKStQbEP1+R1fZQoaAZoCWgPQwhHyhZJO1JhQJSGlFKUaBVN6ANoFkdApK1IGW2PUHV9lChoBmgJaA9DCIl8l1KXNmJAlIaUUpRoFU3oA2gWR0CkrXRMewLWdX2UKGgGaAloD0MIiSmRRC/7YUCUhpRSlGgVTegDaBZHQKSwPrEcbR51fZQoaAZoCWgPQwgBiSZQxAZiQJSGlFKUaBVN6ANoFkdApLB7OPeYUnVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 72,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWV/wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZi9ob21lL2FsZXhiYWxhbmRpL21hbWJhZm9yZ2UvZW52cy9oZl9ybC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZi9ob21lL2FsZXhiYWxhbmRpL21hbWJhZm9yZ2UvZW52cy9oZl9ybC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42abb5b14b782689586d139d3b596d3ee8e650c9097edc46c619fe77915af614
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e893e715723aaf0da427071ad623fa9ddfada17d360cb28af9f33cf2cb4c708
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.2.2-arch1-g14-1-x86_64-with-glibc2.37 # 5 SMP PREEMPT_DYNAMIC Sat, 04 Mar 2023 20:30:14 +0000
2
+ - Python: 3.10.9
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.2
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (201 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 263.40052418073543, "std_reward": 11.318721552532649, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-12T15:05:40.966596"}