File size: 13,823 Bytes
aa60148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import os
import torch
import onnx
import torch.nn as nn
from torch.nn import functional as F
from datetime import datetime
torch.manual_seed(1337)  # for reproducibility

SEP = 50 * '-'

# hyperparameters ----------------------------------------------------------------------------------
batch_size = 64  # how many independent sequences will we process in parallel
block_size = 256  # what i sthe maximum context length for predictions
max_iters = 5000  # how many iterations to train for
eval_interval = 500  # how often to evaluate the model
learning_rate = 3e-4  # how fast we update the weights, lowering the learning rate as the model gets bigger
device = 'cuda' if torch.cuda.is_available() else 'cpu'  # check if GPU is available
eval_iters = 200  # how many batches to average for evaluation
n_embd = 384  # number of embedding dimensions
n_head = 6  # number of self-attention heads
n_layer = 6  # number of transformer blocks
dropout = 0.2  # dropout rate

# dataset ------------------------------------------------------------------------------------------
dataset_path = 'dataset/tiny-lafontaine.txt'
with open(dataset_path, 'r', encoding='utf-8') as f:
    text = f.read()

# here are all the unique characters that occur in this text
chars = sorted(list(set(text)))
vocab_size = len(chars)

# create a mapping from characters to integers
stoi = {ch: i for i, ch in enumerate(chars)}  # chars -> ints table
itos = {i: ch for i, ch in enumerate(chars)}  # ints -> chars table
encode = lambda s: [stoi[c] for c in s]  # encoder: takes a string, outputs a list of integers
decode = lambda l: ''.join([itos[i] for i in l])  # decoder: takes a list of integers, output a string

# train and test splits
data = torch.tensor(encode(text), dtype=torch.long)
n = int(0.9 * len(data))   # first 90% of the data will be the training set, rest will be the validation set
train_data = data[:n]
val_data = data[n:]


# data loading -------------------------------------------------------------------------------------
def get_batch(split):
    # Generate a small batch of data of inputs x and targets y
    data = train_data if split == 'train' else val_data  # choose the split
    ix = torch.randint(len(data) - block_size, (batch_size,))  # sample random starting indices for the sequences
    x = torch.stack([data[i: i + block_size] for i in ix])  # create a batch of context windows
    y = torch.stack([data[i + 1:i + block_size + 1] for i in ix])  # create a batch of targets, one step forward
    x, y = x.to(device), y.to(device)  # move the data to the device
    return x, y


@torch.no_grad()  # this is just to reduce memory consumption, block won't call backward, no back-propagation
def estimate_loss():
    out = {}  # store the losses for the train and val splits
    model.eval()  # switch to evaluation mode
    for split in ['train', 'val']:  # iterate over both splits
        losses = torch.zeros(eval_iters)  # store the loss for each batch
        for k in range(eval_iters):  # iterate over the number of batches
            X, Y = get_batch(split)  # get a batch of data
            _, loss = model(X, Y)  # compute the loss
            losses[k] = loss.item()  # store the loss
        out[split] = losses.mean()  # store the average loss for the split
    model.train()  # switch back to training mode
    return out  # return the losses


# self-attention head ------------------------------------------------------------------------------
class Head(nn.Module):

    def __init__(self, head_size):
        super().__init__()
        self.key = nn.Linear(n_embd, head_size, bias=False)  # key projection
        self.query = nn.Linear(n_embd, head_size, bias=False)  # query projection
        self.value = nn.Linear(n_embd, head_size, bias=False)  # value projection
        self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))  # causal mask
        self.dropout = nn.Dropout(dropout)  # dropout layer

    def forward(self, x):
        B, T, C = x.shape
        k = self.key(x)  # (B, T, C)
        q = self.query(x)  # (B, T, C)
        # compute attention scores ("affinities")
        wei = q @ k.transpose(-2, -1) * C**-0.5  # (B, T, T) @ (B, C, T) -> (B, T, T)
        wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf'))  # (B, T, T)
        wei = F.softmax(wei, dim=-1)  # (B, T, T)
        wei = self.dropout(wei)  # apply dropout
        # perform the weighted aggregation of the values
        v = self.value(x)
        out = wei @ v  # (B, T, T) @ (B, T, C) -> (B, T, C)
        return out


# multi-attention head -----------------------------------------------------------------------------
class MultiHeadAttention(nn.Module):
    """multiple heads of self-attention in parallel"""

    def __init__(self, num_heads, head_size):
        super().__init__()
        self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])  # create n_heads heads
        self.proj = nn.Linear(n_embd, n_embd)  # linear projection to get back to the original dimension

    def forward(self, x):
        out = torch.cat([h(x) for h in self.heads], dim=-1)  # concatenate the outputs of each head
        out = self.proj(out)  # linear projection to get back to the original dimension
        return out


# feedforward block --------------------------------------------------------------------------------
class FeedForward(nn.Module):
    """a simple linear layer followed by a non-linearity"""

    def __init__(self, n_embd):
        super().__init__()  # call the constructor of the parent class
        self.net = nn.Sequential(
            nn.Linear(n_embd, 4 * n_embd),  # linear layer
            nn.ReLU(),  # activation function
            nn.Linear(4 * n_embd, n_embd),  # projection layer to get back to the original dimension
            nn.Dropout(dropout),  # dropout layer
        )

    def forward(self, x):
        return self.net(x)  # apply the feedforward block


# transformer block --------------------------------------------------------------------------------
class Block(nn.Module):
    """ Transformer block: communication followed by computation """

    def __init__(self, n_embd, n_head):
        # n_embd: embedding dimension, n_head: number of heads we'd like
        super().__init__()
        head_size = n_embd // n_head  # size of the self-attention heads
        self.sa = MultiHeadAttention(n_head, head_size)  # self-attention layer
        self.ffwd = FeedForward(n_embd)  # feedforward block
        self.ln1 = nn.LayerNorm(n_embd)  # layer normalization
        self.ln2 = nn.LayerNorm(n_embd)  # layer normalization

    def forward(self, x):
        x = x + self.sa(self.ln1(x))  # apply the self-attention block. Layer normalization is applied before
        x = x + self.ffwd(self.ln2(x))  # apply the feedforward block. Layer normalization is applied before
        return x


# simple bigram model ------------------------------------------------------------------------------
class BigramLanguageModel(nn.Module):

    def __init__(self):
        super().__init__()
        # each token directly reads off the logits from the next token from a lookup table
        self.token_embedding_table = nn.Embedding(vocab_size, n_embd)  # token embeddings
        self.position_embedding_table = nn.Embedding(block_size, n_embd)  # positional embeddings
        self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])  # stack of transformer blocks
        self.ln_f = nn.LayerNorm(n_embd),  # final layer normalization
        self.lm_head = nn.Linear(n_embd, vocab_size)  # output layer

    def forward(self, idx, targets=None):
        B, T = idx.shape

        # idx and targets are both (B, T) tensors of integers
        tok_emb = self.token_embedding_table(idx)  # (B, T, C) = Batch, Time (block_size), Channels (vocab_size)
        pos_emb = self.position_embedding_table(torch.arange(T, device=device))  # (T, C)
        x = tok_emb + pos_emb  # (B, T, C)
        x = self.blocks(x)  # apply the transformer blocks, multiple layers of self-attention and feedforward, (B, T, C)
        logits = self.lm_head(x)  # decoder head (B, T, vocab_size)

        if targets is None:  # if we don't have targets, we can't compute the loss
            loss = None

        else:
            # reshape the logits to be (B*T, C) and the targets to be (B*T) so we can compute the loss
            B, T, C = logits.shape  # unpack batch, time, channels
            logits = logits.view(B * T, C)  # flatten the Time and Batch dimensions
            targets = targets.view(B * T)  # flatten the Time and Batch dimensions

            # compute the loss using cross entropy = quality of the logicts in respect to the targets
            loss = F.cross_entropy(logits, targets)

        return logits, loss

    def generate(self, idx, max_new_tokens):
        # idx is a (B, T) array of indices in the current context
        for _ in range(max_new_tokens):
            # crop idx to the last block_size tokens
            idx_cond = idx[:, -block_size:]  # (B, T)
            # get the predictions
            logits, loss = self(idx_cond)  # (B, T, C)  internally calls the forward method in pytorch
            # focus only on the last time step
            logits = logits[:, -1, :]  # becomes (B, C)
            # apply softmax to get probabilities
            probs = F.softmax(logits, dim=-1)  # (B, C)
            # sample from the distribution
            idx_next = torch.multinomial(probs, num_samples=1)  # (B, 1)
            # append sampled index to the running sequence
            idx = torch.cat((idx, idx_next), dim=1)  # (B, T+1)

        return idx


# train model --------------------------------------------------------------------------------------
def train_model():
    # create the model and optimizer
    model = BigramLanguageModel()
    m = model.to(device)  # move the model to the device (cuda)

    # create a PyTorch optimizer
    optimizer = torch.optim.AdamW(m.parameters(), lr=learning_rate)  # AdamW is a good optimizer for transformers

    # training loop ------------------------------------------------------------------------------------
    for iter in range(max_iters):

        # every once in a while evaluate the loss on the train and val sets
        if iter % eval_interval == 0:
            losses = estimate_loss()
            print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")

        # sample a batch of data
        xb, yb = get_batch('train')

        # evaluate the loss
        _, loss = m(xb, yb)  # calling the model and passing in the input and the targets
        optimizer.zero_grad(set_to_none=True)  # clear previous gradients
        loss.backward()  # compute new gradients
        optimizer.step()  # update the weights

    # generate from the model
    context = torch.zeros((1, 1), dtype=torch.long, device=device)  # initialize context to be a single token
    print(decode(m.generate(context, max_new_tokens=500)[0].tolist()))  # generate 100 new tokens

    # save model
    save_model(model)

    return m


# save model ---------------------------------------------------------------------------------------
def save_model(model, save_path=None):
    try:
        if save_path is None:
            filename = os.path.splitext(os.path.basename(__file__))[0]
            timestamp = datetime.now().strftime('%y%m%d_%H%M')
            save_path = f'{filename}_{timestamp}.pth'

        torch.save(model.state_dict(), save_path)
        print(f"Model saved to {save_path}.")
        return save_path

    except Exception as e:
        print(f"Error saving the model: {e}")


# load model ---------------------------------------------------------------------------------------
def load_model(model_path):
    try:
        # Load the model
        device = 'cuda' if torch.cuda.is_available() else 'cpu'
        model = BigramLanguageModel().to(device)
        model.load_state_dict(torch.load(model_path, map_location=device, weights_only=True))
        print(f"Model loaded from {model_path}.")
        return model

    except Exception as e:
        print(f"Error loading the model: {e}")


# run inference ------------------------------------------------------------------------------------
def run_inference(model, max_tokens=500):
    # Set to evaluation mode
    model.eval()
    # Define a starting context and run inference
    context = torch.zeros((1, 1), dtype=torch.long, device=device)  # Initialize with a single token
    generated_sequence = model.generate(context, max_tokens)  # Generate text
    generated_text = decode(generated_sequence[0].tolist())  # Decode the generated indices to text
    return generated_text


# export model to onnx format ----------------------------------------------------------------------
def export_onnx_model(pt_model, onnx_path):
    try:
        # Dummy input tensor of the same shape as your training input
        dummy_input = torch.zeros((1, 256), dtype=torch.long).to(device)  # Example input shape

        # Export the model to ONNX format
        torch.onnx.export(
            pt_model,  # your trained model
            dummy_input,  # example input tensor
            onnx_path,  # output file path
            input_names=["input"],  # input layer names
            output_names=["output"],  # output layer names
            dynamic_axes={"input": {0: "batch_size"}, "output": {0: "batch_size"}},  # dynamic axis support
            opset_version=13  # compatibility with latest ONNX version
        )

        print(f"Model exported to {onnx_path}.")

    except Exception as e:
        print(f"Error exporting the onnx model: {e}")


if __name__ == '__main__':

    # train model
    model = train_model()