File size: 3,108 Bytes
e06c4d5
 
81e89b6
e06c4d5
11562f2
 
 
 
e06c4d5
 
11562f2
 
25a79b1
11562f2
e06c4d5
a310d9d
e06c4d5
4312d76
e06c4d5
4312d76
e06c4d5
 
 
11562f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81e89b6
97bfaaf
 
11562f2
 
 
 
4312d76
11562f2
 
 
4312d76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11562f2
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: mit
base_model: alexue4/text-normalization-ru-new
tags:
- generated_from_trainer
model-index:
- name: text-normalization-ru-new
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# text-normalization-ru-new

This model is a fine-tuned version of [alexue4/text-normalization-ru-new](https://huggingface.co/alexue4/text-normalization-ru-new) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0405
- Mean Distance: 0
- Max Distance: 6

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 15
- eval_batch_size: 15
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Max Distance | Mean Distance |
|:-------------:|:-----:|:------:|:---------------:|:------------:|:-------------:|
| 0.0052        | 1.0   | 14041  | 0.0272          | 9            | 0             |
| 0.0045        | 2.0   | 28088  | 0.0327          | 0            | 9             |
| 0.0043        | 3.0   | 42132  | 0.0317          | 0            | 6             |
| 0.0042        | 4.0   | 56176  | 0.0316          | 0            | 6             |
| 0.0035        | 5.0   | 70220  | 0.0357          | 0            | 6             |
| 0.0032        | 6.0   | 84264  | 0.0365          | 0            | 6             |
| 0.0027        | 7.0   | 98308  | 0.0403          | 0            | 6             |
| 0.0027        | 8.0   | 112352 | 0.0398          | 0            | 6             |
| 0.0023        | 9.0   | 126396 | 0.0404          | 0            | 6             |
| 0.0023        | 10.0  | 140440 | 0.0385          | 0            | 6             |
| 0.002         | 11.0  | 154484 | 0.0407          | 0            | 6             |
| 0.0018        | 12.0  | 168528 | 0.0426          | 0            | 9             |
| 0.0018        | 13.0  | 182572 | 0.0422          | 0            | 6             |
| 0.0016        | 14.0  | 196616 | 0.0421          | 0            | 6             |
| 0.0016        | 15.0  | 210660 | 0.0402          | 0            | 6             |
| 0.0014        | 16.0  | 224704 | 0.0407          | 0            | 6             |
| 0.0014        | 17.0  | 238748 | 0.0427          | 0            | 6             |
| 0.0014        | 18.0  | 252792 | 0.0411          | 0            | 6             |
| 0.0013        | 19.0  | 266836 | 0.0406          | 0            | 6             |
| 0.0013        | 20.0  | 280880 | 0.0405          | 0            | 6             |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3