File size: 2,064 Bytes
9ea119f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-Arabizi-gpu-colab-similar-to-german-param
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-Arabizi-gpu-colab-similar-to-german-param
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5609
- Wer: 0.4042
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 6
- total_train_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 4.6416 | 2.83 | 400 | 2.8983 | 1.0 |
| 1.4951 | 5.67 | 800 | 0.6272 | 0.6097 |
| 0.6419 | 8.51 | 1200 | 0.5491 | 0.5069 |
| 0.4767 | 11.35 | 1600 | 0.5152 | 0.4553 |
| 0.3899 | 14.18 | 2000 | 0.5436 | 0.4475 |
| 0.3342 | 17.02 | 2400 | 0.5400 | 0.4431 |
| 0.2982 | 19.85 | 2800 | 0.5599 | 0.4248 |
| 0.2738 | 22.69 | 3200 | 0.5401 | 0.4103 |
| 0.2563 | 25.53 | 3600 | 0.5710 | 0.4198 |
| 0.2443 | 28.37 | 4000 | 0.5609 | 0.4042 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu113
- Datasets 1.18.3
- Tokenizers 0.10.3
|