ppo-LunarLander-v2 / config.json
ali6parmak's picture
Upload PPO LunarLander-v2 trained agent
6743846 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f942a56fa30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f942a56fac0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f942a56fb50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f942a56fbe0>", "_build": "<function ActorCriticPolicy._build at 0x7f942a56fc70>", "forward": "<function ActorCriticPolicy.forward at 0x7f942a56fd00>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f942a56fd90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f942a56fe20>", "_predict": "<function ActorCriticPolicy._predict at 0x7f942a56feb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f942a56ff40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f942a574040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f942a5740d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f942a7089c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1725412998354514075, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALOmGL3PyFu8Y3J1POUnJz0XgK489BsHuAAAgD8AAIA/ehFIvpThuD6rUyQ/1KSevoUSnj1Phrg+AAAAAAAAAACzIhK9/WQ9P17f6bwg6w+/R0ZuvaC9ZrsAAAAAAAAAAGb/yjxI/ZW6uICHOy2PUznMtgc7AMB/NgAAgD8AAIA/ZgLqu7CYsj/SxHG+BCmEvvE+jDtb9G08AAAAAAAAAACAJyU9C2mQPWqgQL5VDsK+j9EIvv5OcrwAAAAAAAAAABquoD1FaJk/1VR8PtXo8r4cQ0E+IFFgPgAAAAAAAAAAZvkwPU+gBLx+iaw7DWuoPICMZ71ht4s9AACAPwAAgD/mFIA9U6DePrADVb6yyO6+UJ6MvUuhdL0AAAAAAAAAAGY+mLvBQoC8XTU2vssCbz07Gqg9E2fUOwAAgD8AAIA/AOZWPRRK5LzwNj+8oSMiPbaRGjyDMMc8AACAPwAAgD8A3C69KtoqPkX4Vz4pqrK+SEGCPfo2Aj4AAAAAAAAAAOZF6D2QMNI+8lRgvsH/9L4/v4S6xcq8vQAAAAAAAAAAACwyvSA4jD6E+Ys+GsDVvkiJwD1rvJc9AAAAAAAAAABNpTK9Qc67PzxvNL/7i7M+1xK0PBhr/LwAAAAAAAAAAJq9m7zSC4W7WsnwO78srTz6at88dMiSvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMusbBGhEmMAWyUS82MAXSUR0DBFTRkK/mDdX2UKGgGR0ByKYBFNL13aAdLt2gIR0DBFT5ltj0+dX2UKGgGR0BxdWXWvr4WaAdLxWgIR0DBFUEX7+DOdX2UKGgGR0Bw9v7MxGlRaAdLy2gIR0DBFT+2RaHLdX2UKGgGR0BwL272+PBBaAdLxmgIR0DBFVyfe1rqdX2UKGgGR0Bw9FrRBu4xaAdLyWgIR0DBFW5VjqfOdX2UKGgGR0BwN/YdyT6jaAdLxmgIR0DBFXKjk+5fdX2UKGgGR0BzB4ulGgBcaAdLyGgIR0DBFYZRIjGDdX2UKGgGR0BwOeVVxS5zaAdL0mgIR0DBFZXQ+lj3dX2UKGgGR0ByxICU5dWyaAdL1GgIR0DBFZPWUbDNdX2UKGgGR0Bxc93Tuv2XaAdLxmgIR0DBFZi6FuejdX2UKGgGR0Bvq0yJsO5KaAdL02gIR0DBFZs9hZyNdX2UKGgGR0ByX8MpgCwKaAdLz2gIR0DBFaOnTAnEdX2UKGgGR0By0OAqd6LPaAdL3WgIR0DBFal/Ue+3dX2UKGgGR0BxkritJWeZaAdLzmgIR0DBFaqswL3LdX2UKGgGR0BwPC8/UvwmaAdLtmgIR0DBFbD0QK8ddX2UKGgGR0BzDIS5AhStaAdLyGgIR0DBFbJ6F/QTdX2UKGgGR0BxgZDb8FY/aAdL1mgIR0DBFbk25xzadX2UKGgGR0BxTMHryDqXaAdL1GgIR0DBFcKLn9vTdX2UKGgGR0BxnFyyUs4DaAdL52gIR0DBFc7vTgEVdX2UKGgGR0BxLPx6OYICaAdLx2gIR0DBGCJfF72MdX2UKGgGR0BxTdoFmnO0aAdLz2gIR0DBGCQeq7yydX2UKGgGR0ByTi5c1O0taAdL7GgIR0DBGCXjQzDXdX2UKGgGR0BzijfpD/lyaAdLuGgIR0DBGCyS1Vo6dX2UKGgGR0Bw20rlNlAeaAdLwGgIR0DBGD0QiA2AdX2UKGgGR0BySqLLpzLfaAdLymgIR0DBGEXldTo/dX2UKGgGR0BzIOMBIWgwaAdLyWgIR0DBGEfYQJ5WdX2UKGgGR0BxNaJk5IYnaAdLxmgIR0DBGEil54W2dX2UKGgGR0BxnYaef7JoaAdLtWgIR0DBGEzcM3IddX2UKGgGR0Bw3VhOP/70aAdLxmgIR0DBGFENayKOdX2UKGgGR0ByauzWwu/UaAdL02gIR0DBGF8mMOwxdX2UKGgGR0BwdmQKa5PNaAdLx2gIR0DBGGAAfdRBdX2UKGgGR0BxDJCdBjWkaAdLz2gIR0DBGGNat9x7dX2UKGgGR0BwupVo6CDmaAdL4GgIR0DBGHWHrQgLdX2UKGgGR0BxOVFkQPI5aAdLz2gIR0DBGHXp6hQFdX2UKGgGR0BtunS0BwMqaAdLzmgIR0DBGINj9XLedX2UKGgGR0Bx65CVrylOaAdLuWgIR0DBGJ91hb4bdX2UKGgGR0Bzoozch1TzaAdL4mgIR0DBGLYaWHDadX2UKGgGR0BznPFhoduHaAdL42gIR0DBGLmjmCAddX2UKGgGR0BzP3fk3juKaAdL62gIR0DBGMPmzSkTdX2UKGgGR0BzGgKZ2IO6aAdLvmgIR0DBGMtfReC1dX2UKGgGR0Bx5AeA/cFhaAdLwmgIR0DBGNBsTFl1dX2UKGgGR0BuSzaGpMpPaAdL1WgIR0DBGNKwbEP2dX2UKGgGR0Bzc57ojfNzaAdL1mgIR0DBGN5n3+MqdX2UKGgGR0BtshCF9KEnaAdL0WgIR0DBGOm/BWPtdX2UKGgGR0BzzHIIWxhVaAdL4WgIR0DBGPHJcPe6dX2UKGgGR0ByDOYplSTAaAdLxWgIR0DBGPvBguyvdX2UKGgGR0BwgP3h4t6HaAdLs2gIR0DBGQdWU8msdX2UKGgGR0BxhLjYI0IkaAdL2mgIR0DBGQrDCP6sdX2UKGgGR0Bv7VPacqe9aAdL42gIR0DBGRIu5BkadX2UKGgGR0BzLg5bQkX2aAdL0mgIR0DBGSOmk30gdX2UKGgGR0ByxRWCEpRXaAdLxWgIR0DBGSjf1pTNdX2UKGgGR0Bx5Rw6ySmqaAdL5mgIR0DBGW2xwAEMdX2UKGgGR0Bwc1da+vhZaAdLymgIR0DBGW7GBFuvdX2UKGgGR0BwX/3qRlpXaAdL0GgIR0DBGXFj0+TvdX2UKGgGR0Bx6OmwaBI4aAdLtWgIR0DBGYG8AaNudX2UKGgGR0BxPt8CxNZeaAdL1GgIR0DBGYRqsU7CdX2UKGgGR0ByguS/0ulHaAdLxGgIR0DBGYQtBfKIdX2UKGgGR0BwkDmgam4zaAdLymgIR0DBGYc+5e7ddX2UKGgGR0BzPzTTfBN3aAdL32gIR0DBGZa0QbuMdX2UKGgGR0ByTN2/zreJaAdLt2gIR0DBGaQiLVFydX2UKGgGR0BwIjRnezlcaAdLzmgIR0DBGaZvaURndX2UKGgGR0ByXAMnZ00WaAdL32gIR0DBGbz7di2EdX2UKGgGR0Bxr6pDNQj2aAdLy2gIR0DBGcBY1YQrdX2UKGgGR0Bt9o6uGKyfaAdLw2gIR0DBGcJqXWvsdX2UKGgGR0BwZwI3R5TqaAdLw2gIR0DBGdRwqAjIdX2UKGgGR0B0ZWlZX+2maAdL6WgIR0DBGduCkGiYdX2UKGgGR0Byj09Pk7wKaAdL1mgIR0DBGenUF0PpdX2UKGgGR0BxUinXNC7caAdLwWgIR0DBGh6OJcgRdX2UKGgGR0ByXS7SRbKSaAdLwWgIR0DBGjNl9SdfdX2UKGgGR0BxT57laKUFaAdL2mgIR0DBGj5DohZAdX2UKGgGR0Bw5m4G2TgVaAdL52gIR0DBGkXIsAeadX2UKGgGR0BzDgbhm5DraAdL1GgIR0DBGklonKGMdX2UKGgGR0Bz73qC6H0saAdL4WgIR0DBGk96ol2NdX2UKGgGR0BxMQZgogFHaAdL52gIR0DBGlQxgy/LdX2UKGgGR0BwWmkXUH6eaAdLyGgIR0DBGleuJUHZdX2UKGgGR0ByNmwfQrtmaAdL4GgIR0DBGlwGD+R6dX2UKGgGR0BzPm+De0ojaAdLxmgIR0DBGmdaY/mldX2UKGgGR0Bv8hPZZjhDaAdLwmgIR0DBGmip97WvdX2UKGgGR0BxvPnjhky2aAdL5WgIR0DBGmirYGt7dX2UKGgGR0By+cs/Y8MeaAdL0GgIR0DBGnBn6EamdX2UKGgGR0Bz1+5BkZrIaAdL6GgIR0DBGqTmMfihdX2UKGgGR0Bz4SIJqqOtaAdNEgFoCEdAwRqyGtZFHHV9lChoBkdAcgIRMewLVmgHS8doCEdAwRq3ZW7vonV9lChoBkdAcvtqp97Wu2gHS9BoCEdAwRrMEIPbwnV9lChoBkdAcfcbsniNsGgHS81oCEdAwRrRMQEpzHV9lChoBkdAc0cGtITXa2gHS81oCEdAwRrYZ3LV4HV9lChoBkdAcHXiFCb+cmgHS7VoCEdAwRraWMS9NHV9lChoBkdAcnMvUSZjQWgHS8NoCEdAwRrboOhCdHV9lChoBkdAcztuSOinHmgHS89oCEdAwRrdorWiDnV9lChoBkdAcNXapxWDH2gHTUkBaAhHQMEa4RlxwQ11fZQoaAZHQHHxEOAiFCdoB0vRaAhHQMEa7zOX3QF1fZQoaAZHQHKHKHKwIMVoB0u+aAhHQMEa7lHBk7R1fZQoaAZHQHInaPGQ0XRoB0vpaAhHQMEa9tg0CRx1fZQoaAZHQHDdsIAwPAhoB0vIaAhHQMEa9b+Lm6p1fZQoaAZHQHH8PphWo3toB0vOaAhHQMEa+RplBhR1fZQoaAZHQHCjspTdcjZoB0vTaAhHQMEbAomG/N91fZQoaAZHQHClnHWBjF1oB0vEaAhHQMEbKFrdnCh1fZQoaAZHQHD4RsZYPoVoB0vFaAhHQMEbMtTkyUN1fZQoaAZHQHK1dO6/ZdxoB0vDaAhHQMEbNlRP4211ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1224, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}