|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
import diffusers |
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin |
|
from diffusers.models.attention import JointTransformerBlock |
|
from diffusers.models.attention_processor import Attention, AttentionProcessor |
|
from diffusers.models.modeling_utils import ModelMixin |
|
from diffusers.utils import ( |
|
USE_PEFT_BACKEND, |
|
is_torch_version, |
|
logging, |
|
scale_lora_layers, |
|
unscale_lora_layers, |
|
) |
|
from diffusers.models.controlnet import BaseOutput, zero_module |
|
from diffusers.models.embeddings import CombinedTimestepTextProjEmbeddings, PatchEmbed |
|
from diffusers.models.transformers.transformer_2d import Transformer2DModelOutput |
|
from torch.nn import functional as F |
|
|
|
logger = logging.get_logger(__name__) |
|
from packaging import version |
|
|
|
class ControlNetConditioningEmbedding(nn.Module): |
|
""" |
|
Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN |
|
[11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized |
|
training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the |
|
convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides |
|
(activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full |
|
model) to encode image-space conditions ... into feature maps ..." |
|
""" |
|
|
|
def __init__( |
|
self, |
|
conditioning_embedding_channels: int, |
|
conditioning_channels: int = 3, |
|
block_out_channels: Tuple[int, ...] = (16, 32, 96, 256), |
|
): |
|
super().__init__() |
|
|
|
self.conv_in = nn.Conv2d( |
|
conditioning_channels, block_out_channels[0], kernel_size=3, padding=1 |
|
) |
|
|
|
self.blocks = nn.ModuleList([]) |
|
|
|
for i in range(len(block_out_channels) - 1): |
|
channel_in = block_out_channels[i] |
|
channel_out = block_out_channels[i + 1] |
|
self.blocks.append( |
|
nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1) |
|
) |
|
self.blocks.append( |
|
nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2) |
|
) |
|
|
|
self.conv_out = zero_module( |
|
nn.Conv2d( |
|
block_out_channels[-1], |
|
conditioning_embedding_channels, |
|
kernel_size=3, |
|
padding=1, |
|
) |
|
) |
|
|
|
def forward(self, conditioning): |
|
embedding = self.conv_in(conditioning) |
|
embedding = F.silu(embedding) |
|
|
|
for block in self.blocks: |
|
embedding = block(embedding) |
|
embedding = F.silu(embedding) |
|
|
|
embedding = self.conv_out(embedding) |
|
|
|
return embedding |
|
|
|
|
|
@dataclass |
|
class SD3ControlNetOutput(BaseOutput): |
|
controlnet_block_samples: Tuple[torch.Tensor] |
|
|
|
|
|
class SD3ControlNetModel( |
|
ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin |
|
): |
|
_supports_gradient_checkpointing = True |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
sample_size: int = 128, |
|
patch_size: int = 2, |
|
in_channels: int = 16, |
|
num_layers: int = 18, |
|
attention_head_dim: int = 64, |
|
num_attention_heads: int = 18, |
|
joint_attention_dim: int = 4096, |
|
caption_projection_dim: int = 1152, |
|
pooled_projection_dim: int = 2048, |
|
out_channels: int = 16, |
|
pos_embed_max_size: int = 96, |
|
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = ( |
|
16, |
|
32, |
|
96, |
|
256, |
|
), |
|
conditioning_channels: int = 3, |
|
): |
|
""" |
|
conditioning_channels: condition image pixel space channels |
|
conditioning_embedding_out_channels: intermediate channels |
|
|
|
""" |
|
super().__init__() |
|
default_out_channels = in_channels |
|
self.out_channels = ( |
|
out_channels if out_channels is not None else default_out_channels |
|
) |
|
self.inner_dim = num_attention_heads * attention_head_dim |
|
|
|
self.pos_embed = PatchEmbed( |
|
height=sample_size, |
|
width=sample_size, |
|
patch_size=patch_size, |
|
in_channels=in_channels, |
|
embed_dim=self.inner_dim, |
|
pos_embed_max_size=pos_embed_max_size, |
|
) |
|
self.time_text_embed = CombinedTimestepTextProjEmbeddings( |
|
embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim |
|
) |
|
self.context_embedder = nn.Linear(joint_attention_dim, caption_projection_dim) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
JointTransformerBlock( |
|
dim=self.inner_dim, |
|
num_attention_heads=num_attention_heads, |
|
attention_head_dim=attention_head_dim if version.parse(diffusers.__version__) >= version.parse('0.30.0.dev0') else self.inner_dim, |
|
context_pre_only=False, |
|
) |
|
for _ in range(num_layers) |
|
] |
|
) |
|
|
|
|
|
self.controlnet_blocks = nn.ModuleList([]) |
|
for _ in range(len(self.transformer_blocks)): |
|
controlnet_block = zero_module(nn.Linear(self.inner_dim, self.inner_dim)) |
|
self.controlnet_blocks.append(controlnet_block) |
|
|
|
|
|
pos_embed_cond = PatchEmbed( |
|
height=sample_size, |
|
width=sample_size, |
|
patch_size=patch_size, |
|
in_channels=in_channels + 1, |
|
embed_dim=self.inner_dim, |
|
pos_embed_type=None, |
|
) |
|
|
|
self.pos_embed_cond = zero_module(pos_embed_cond) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
def enable_forward_chunking( |
|
self, chunk_size: Optional[int] = None, dim: int = 0 |
|
) -> None: |
|
""" |
|
Sets the attention processor to use [feed forward |
|
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers). |
|
|
|
Parameters: |
|
chunk_size (`int`, *optional*): |
|
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually |
|
over each tensor of dim=`dim`. |
|
dim (`int`, *optional*, defaults to `0`): |
|
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch) |
|
or dim=1 (sequence length). |
|
""" |
|
if dim not in [0, 1]: |
|
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}") |
|
|
|
|
|
chunk_size = chunk_size or 1 |
|
|
|
def fn_recursive_feed_forward( |
|
module: torch.nn.Module, chunk_size: int, dim: int |
|
): |
|
if hasattr(module, "set_chunk_feed_forward"): |
|
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) |
|
|
|
for child in module.children(): |
|
fn_recursive_feed_forward(child, chunk_size, dim) |
|
|
|
for module in self.children(): |
|
fn_recursive_feed_forward(module, chunk_size, dim) |
|
|
|
@property |
|
|
|
def attn_processors(self) -> Dict[str, AttentionProcessor]: |
|
r""" |
|
Returns: |
|
`dict` of attention processors: A dictionary containing all attention processors used in the model with |
|
indexed by its weight name. |
|
""" |
|
|
|
processors = {} |
|
|
|
def fn_recursive_add_processors( |
|
name: str, |
|
module: torch.nn.Module, |
|
processors: Dict[str, AttentionProcessor], |
|
): |
|
if hasattr(module, "get_processor"): |
|
processors[f"{name}.processor"] = module.get_processor( |
|
return_deprecated_lora=True |
|
) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) |
|
|
|
return processors |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_add_processors(name, module, processors) |
|
|
|
return processors |
|
|
|
|
|
def set_attn_processor( |
|
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]] |
|
): |
|
r""" |
|
Sets the attention processor to use to compute attention. |
|
|
|
Parameters: |
|
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): |
|
The instantiated processor class or a dictionary of processor classes that will be set as the processor |
|
for **all** `Attention` layers. |
|
|
|
If `processor` is a dict, the key needs to define the path to the corresponding cross attention |
|
processor. This is strongly recommended when setting trainable attention processors. |
|
|
|
""" |
|
count = len(self.attn_processors.keys()) |
|
|
|
if isinstance(processor, dict) and len(processor) != count: |
|
raise ValueError( |
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" |
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." |
|
) |
|
|
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): |
|
if hasattr(module, "set_processor"): |
|
if not isinstance(processor, dict): |
|
module.set_processor(processor) |
|
else: |
|
module.set_processor(processor.pop(f"{name}.processor")) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_attn_processor(name, module, processor) |
|
|
|
|
|
def fuse_qkv_projections(self): |
|
""" |
|
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) |
|
are fused. For cross-attention modules, key and value projection matrices are fused. |
|
|
|
<Tip warning={true}> |
|
|
|
This API is 🧪 experimental. |
|
|
|
</Tip> |
|
""" |
|
self.original_attn_processors = None |
|
|
|
for _, attn_processor in self.attn_processors.items(): |
|
if "Added" in str(attn_processor.__class__.__name__): |
|
raise ValueError( |
|
"`fuse_qkv_projections()` is not supported for models having added KV projections." |
|
) |
|
|
|
self.original_attn_processors = self.attn_processors |
|
|
|
for module in self.modules(): |
|
if isinstance(module, Attention): |
|
module.fuse_projections(fuse=True) |
|
|
|
|
|
def unfuse_qkv_projections(self): |
|
"""Disables the fused QKV projection if enabled. |
|
|
|
<Tip warning={true}> |
|
|
|
This API is 🧪 experimental. |
|
|
|
</Tip> |
|
|
|
""" |
|
if self.original_attn_processors is not None: |
|
self.set_attn_processor(self.original_attn_processors) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if hasattr(module, "gradient_checkpointing"): |
|
module.gradient_checkpointing = value |
|
|
|
@classmethod |
|
def from_transformer( |
|
cls, transformer, num_layers=None, load_weights_from_transformer=True |
|
): |
|
config = transformer.config |
|
config["num_layers"] = num_layers or config.num_layers |
|
controlnet = cls(**config) |
|
|
|
if load_weights_from_transformer: |
|
controlnet.pos_embed.load_state_dict( |
|
transformer.pos_embed.state_dict(), strict=False |
|
) |
|
controlnet.time_text_embed.load_state_dict( |
|
transformer.time_text_embed.state_dict(), strict=False |
|
) |
|
controlnet.context_embedder.load_state_dict( |
|
transformer.context_embedder.state_dict(), strict=False |
|
) |
|
controlnet.transformer_blocks.load_state_dict( |
|
transformer.transformer_blocks.state_dict(), strict=False |
|
) |
|
|
|
return controlnet |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
controlnet_cond: torch.Tensor, |
|
conditioning_scale: float = 1.0, |
|
encoder_hidden_states: torch.FloatTensor = None, |
|
pooled_projections: torch.FloatTensor = None, |
|
timestep: torch.LongTensor = None, |
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
return_dict: bool = True, |
|
) -> Union[torch.FloatTensor, Transformer2DModelOutput]: |
|
""" |
|
The [`SD3Transformer2DModel`] forward method. |
|
|
|
Args: |
|
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): |
|
Input `hidden_states`. |
|
controlnet_cond (`torch.Tensor`): |
|
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`. |
|
conditioning_scale (`float`, defaults to `1.0`): |
|
The scale factor for ControlNet outputs. |
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`): |
|
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. |
|
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected |
|
from the embeddings of input conditions. |
|
timestep ( `torch.LongTensor`): |
|
Used to indicate denoising step. |
|
joint_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain |
|
tuple. |
|
|
|
Returns: |
|
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a |
|
`tuple` where the first element is the sample tensor. |
|
""" |
|
if joint_attention_kwargs is not None: |
|
joint_attention_kwargs = joint_attention_kwargs.copy() |
|
lora_scale = joint_attention_kwargs.pop("scale", 1.0) |
|
else: |
|
lora_scale = 1.0 |
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
scale_lora_layers(self, lora_scale) |
|
else: |
|
if ( |
|
joint_attention_kwargs is not None |
|
and joint_attention_kwargs.get("scale", None) is not None |
|
): |
|
logger.warning( |
|
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." |
|
) |
|
|
|
height, width = hidden_states.shape[-2:] |
|
|
|
hidden_states = self.pos_embed( |
|
hidden_states |
|
) |
|
temb = self.time_text_embed(timestep, pooled_projections) |
|
encoder_hidden_states = self.context_embedder(encoder_hidden_states) |
|
|
|
|
|
hidden_states = hidden_states + self.pos_embed_cond(controlnet_cond) |
|
|
|
block_res_samples = () |
|
|
|
for block in self.transformer_blocks: |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = ( |
|
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
) |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
hidden_states, |
|
encoder_hidden_states, |
|
temb, |
|
**ckpt_kwargs, |
|
) |
|
|
|
else: |
|
encoder_hidden_states, hidden_states = block( |
|
hidden_states=hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
temb=temb, |
|
) |
|
|
|
block_res_samples = block_res_samples + (hidden_states,) |
|
|
|
controlnet_block_res_samples = () |
|
for block_res_sample, controlnet_block in zip( |
|
block_res_samples, self.controlnet_blocks |
|
): |
|
block_res_sample = controlnet_block(block_res_sample) |
|
controlnet_block_res_samples = controlnet_block_res_samples + ( |
|
block_res_sample, |
|
) |
|
|
|
|
|
controlnet_block_res_samples = [ |
|
sample * conditioning_scale for sample in controlnet_block_res_samples |
|
] |
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self, lora_scale) |
|
|
|
if not return_dict: |
|
return (controlnet_block_res_samples,) |
|
|
|
return SD3ControlNetOutput( |
|
controlnet_block_samples=controlnet_block_res_samples |
|
) |
|
|
|
def invert_copy_paste(self, controlnet_block_samples): |
|
controlnet_block_samples = controlnet_block_samples + controlnet_block_samples[::-1] |
|
return controlnet_block_samples |
|
|
|
class SD3MultiControlNetModel(ModelMixin): |
|
r""" |
|
`SD3ControlNetModel` wrapper class for Multi-SD3ControlNet |
|
|
|
This module is a wrapper for multiple instances of the `SD3ControlNetModel`. The `forward()` API is designed to be |
|
compatible with `SD3ControlNetModel`. |
|
|
|
Args: |
|
controlnets (`List[SD3ControlNetModel]`): |
|
Provides additional conditioning to the unet during the denoising process. You must set multiple |
|
`SD3ControlNetModel` as a list. |
|
""" |
|
|
|
def __init__(self, controlnets): |
|
super().__init__() |
|
self.nets = nn.ModuleList(controlnets) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
controlnet_cond: List[torch.tensor], |
|
conditioning_scale: List[float], |
|
pooled_projections: torch.FloatTensor, |
|
encoder_hidden_states: torch.FloatTensor = None, |
|
timestep: torch.LongTensor = None, |
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
return_dict: bool = True, |
|
) -> Union[SD3ControlNetOutput, Tuple]: |
|
for i, (image, scale, controlnet) in enumerate( |
|
zip(controlnet_cond, conditioning_scale, self.nets) |
|
): |
|
block_samples = controlnet( |
|
hidden_states=hidden_states, |
|
timestep=timestep, |
|
encoder_hidden_states=encoder_hidden_states, |
|
pooled_projections=pooled_projections, |
|
controlnet_cond=image, |
|
conditioning_scale=scale, |
|
joint_attention_kwargs=joint_attention_kwargs, |
|
return_dict=return_dict, |
|
) |
|
|
|
|
|
if i == 0: |
|
control_block_samples = block_samples |
|
else: |
|
control_block_samples = [ |
|
control_block_sample + block_sample |
|
for control_block_sample, block_sample in zip( |
|
control_block_samples[0], block_samples[0] |
|
) |
|
] |
|
control_block_samples = (tuple(control_block_samples),) |
|
|
|
return control_block_samples |
|
|