Upload driverpospredictionfinal.py
Browse files- driverpospredictionfinal.py +239 -0
driverpospredictionfinal.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""DriverPosPredictionFinal
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1DGTfO4HEZDof1phuficJD_J8v38JnF3C
|
8 |
+
"""
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
from sklearn import tree, linear_model
|
17 |
+
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
|
18 |
+
from sklearn.model_selection import train_test_split, GridSearchCV
|
19 |
+
!pip install bayesian-optimization
|
20 |
+
from bayes_opt import BayesianOptimization
|
21 |
+
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score, mean_squared_log_error, median_absolute_error
|
22 |
+
import pandas as pd
|
23 |
+
import joblib
|
24 |
+
import matplotlib.pyplot as plt
|
25 |
+
import seaborn as sns
|
26 |
+
import numpy as np
|
27 |
+
import xgboost as xgb
|
28 |
+
import pickle
|
29 |
+
|
30 |
+
def read_data(file_name):
|
31 |
+
df = pd.read_csv(file_name)
|
32 |
+
x= df.drop(['RaceID', "Pos", "formating" ], axis=1)
|
33 |
+
y =df["Pos"]
|
34 |
+
return x,y
|
35 |
+
|
36 |
+
#returns the object for model being used
|
37 |
+
def decision_tree_regressor_method():
|
38 |
+
dtree = DecisionTreeRegressor(random_state=42)
|
39 |
+
return dtree
|
40 |
+
def decsison_tree_classifier_method(X_train,y_train):
|
41 |
+
dtree = DecisionTreeClassifier()
|
42 |
+
dtree = dtree.fit(X_train,y_train)
|
43 |
+
return dtree
|
44 |
+
def linear_reg(X_train,y_train):
|
45 |
+
regr= linear_model.LinearRegression()
|
46 |
+
regr.fit(X_train,y_train)
|
47 |
+
return regr
|
48 |
+
def hyper_paramter_tuning(model, xtrain,ytrain,**kwargs): #doesnt work for linear regression
|
49 |
+
#dtree = DecisionTreeRegressor(random_state=42)
|
50 |
+
# grid_search_object = GridSearchCV(estimator=model, param_grid=kwargs, cv=5, n_jobs=-1, verbose=2, scoring='neg_mean_squared_error')
|
51 |
+
grid_search_object = GridSearchCV(estimator=model, param_grid=kwargs, cv=3, n_jobs=-1, verbose=2, scoring='neg_mean_squared_error')
|
52 |
+
grid_search_object.fit(xtrain,ytrain)
|
53 |
+
best_estimator = grid_search_object.best_estimator_
|
54 |
+
return best_estimator
|
55 |
+
|
56 |
+
|
57 |
+
def predict(model, xtest,ytest):
|
58 |
+
# Predict the target for the test set
|
59 |
+
y_pred = model.predict(xtest)
|
60 |
+
# Calculate various evaluation metrics
|
61 |
+
mse = mean_squared_error(ytest, y_pred)
|
62 |
+
rmse = mse ** 0.5
|
63 |
+
mae = mean_absolute_error(ytest, y_pred)
|
64 |
+
r2 = r2_score(ytest, y_pred)
|
65 |
+
msle = mean_squared_log_error(ytest, y_pred)
|
66 |
+
medae = median_absolute_error(ytest, y_pred)
|
67 |
+
# Print the metrics
|
68 |
+
|
69 |
+
print(f"Test MSE: {mse}") # smaller is better - mean squared error
|
70 |
+
print(f"Test RMSE: {rmse}")#
|
71 |
+
print(f"Test MAE: {mae}")
|
72 |
+
print(f"Test R²: {r2}")
|
73 |
+
print(f"Test MSLE: {msle}")
|
74 |
+
print(f"Test Median Absolute Error: {medae}")
|
75 |
+
#rmse measures abg magnitude of errors betwen actual and predicted values
|
76 |
+
return y_pred
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
+
def hyperamter_tuning_paramter_grid():
|
81 |
+
parameter_grid = {'max_depth': [1,2,3,4,5,None],
|
82 |
+
"min_samples_split":[2,3,5,6] ,
|
83 |
+
'min_samples_leaf': [1,2,4,5],
|
84 |
+
"min_weight_fraction_leaf": [0.0,0.01, 0.05,0.1, 0.2],# add more hypermater tuning criteria
|
85 |
+
}#'criterion': ['gini', 'entropy']
|
86 |
+
return parameter_grid
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
def ask_user(model, X_test=None):
|
92 |
+
"""
|
93 |
+
Collect user input and format it for prediction.
|
94 |
+
Returns a DataFrame with a single row formatted like the training data.
|
95 |
+
"""
|
96 |
+
try:
|
97 |
+
# Create a dictionary to store inputs
|
98 |
+
input_data = {}
|
99 |
+
|
100 |
+
# Collect basic race information
|
101 |
+
input_data['LapNumber'] = float(input("Enter the number of total laps in race: "))
|
102 |
+
input_data['LapTimes'] = float(input("Avg lap time from prev year (or estimate 98): "))
|
103 |
+
input_data['PitStopTimes'] = float(input("Enter pit stop time (0 if no pit stop): "))
|
104 |
+
input_data['PrevLap'] = float(input("Enter avg lap time differece (0-2) (0 if first lap): "))
|
105 |
+
|
106 |
+
# Collect race conditions
|
107 |
+
input_data['AvgSpeed'] = float(input("Enter average speed in km/h from prev year: "))
|
108 |
+
input_data['AirTemp_Cel'] = float(input("estimate air temperature in Celsius on race day: "))
|
109 |
+
input_data['TrackTemp_Cel'] = float(input("estimate track temperature in Celsius on race day: "))
|
110 |
+
input_data['Humidity'] = float(input("estimate the humidity percentage (0-100) on race day: "))
|
111 |
+
input_data['WindSpeed_km/h'] = float(input("estimate wind speed in km/h: "))
|
112 |
+
|
113 |
+
# Create a DataFrame with the input data
|
114 |
+
input_df = pd.DataFrame([input_data])
|
115 |
+
|
116 |
+
# If we have a test set, ensure our columns match the training data
|
117 |
+
if X_test is not None:
|
118 |
+
missing_cols = set(X_test.columns) - set(input_df.columns)
|
119 |
+
# Add any missing columns with 0s
|
120 |
+
for col in missing_cols:
|
121 |
+
input_df[col] = 0
|
122 |
+
# Ensure column order matches training data
|
123 |
+
input_df = input_df[X_test.columns]
|
124 |
+
|
125 |
+
# Make prediction
|
126 |
+
prediction = model.predict(input_df)
|
127 |
+
print(f"\nPredicted position: {int(round(prediction[0]))}")
|
128 |
+
|
129 |
+
return prediction[0]
|
130 |
+
|
131 |
+
except ValueError as e:
|
132 |
+
print(f"Error: Please enter valid numeric values. Details: {e}")
|
133 |
+
return None
|
134 |
+
except Exception as e:
|
135 |
+
print(f"An error occurred: {e}")
|
136 |
+
return None
|
137 |
+
|
138 |
+
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
#-----linear regresssion------------
|
143 |
+
x , y= read_data("b.csv")
|
144 |
+
xtrain, xtest , ytrain, ytest = train_test_split(x,y,test_size = 0.3)
|
145 |
+
|
146 |
+
model_1 = linear_reg(xtrain,ytrain)
|
147 |
+
|
148 |
+
ypred = predict(model_1,xtest,ytest)
|
149 |
+
#visvualize(ytest,ypred)
|
150 |
+
|
151 |
+
#-----descision tree classifier-----
|
152 |
+
x , y= read_data("b.csv")
|
153 |
+
xtrain, xtest , ytrain, ytest = train_test_split(x,y,test_size = 0.3)
|
154 |
+
|
155 |
+
model_2 = decsison_tree_classifier_method(xtrain,ytrain)
|
156 |
+
|
157 |
+
parameter_grid= hyperamter_tuning_paramter_grid()
|
158 |
+
tuned_model_2 = hyper_paramter_tuning(model_2,xtrain,ytrain,**parameter_grid)
|
159 |
+
y_pred = predict(tuned_model_2,xtest,ytest)
|
160 |
+
|
161 |
+
#visvualize(ytest,ypred)
|
162 |
+
|
163 |
+
#----descision tree regressor-------
|
164 |
+
x , y= read_data("b.csv")
|
165 |
+
xtrain, xtest , ytrain, ytest = train_test_split(x,y,test_size = 0.3)
|
166 |
+
|
167 |
+
model_3 = decision_tree_regressor_method()
|
168 |
+
|
169 |
+
parameter_grid= hyperamter_tuning_paramter_grid()
|
170 |
+
tuned_model_3 = hyper_paramter_tuning(model_3,xtrain,ytrain,**parameter_grid)
|
171 |
+
y_pred= predict(tuned_model_3,xtest,ytest)
|
172 |
+
|
173 |
+
|
174 |
+
# Ask user for input and predict position
|
175 |
+
#predicted_position = ask_user(tuned_model_3, x_columns)
|
176 |
+
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
predicted_position = ask_user(tuned_model_3, xtest)
|
181 |
+
|
182 |
+
#pickle.dump(tuned_model_3.open('model.pkl','mb'))
|
183 |
+
|
184 |
+
!pip install streamlit
|
185 |
+
import streamlit as st
|
186 |
+
import pickle
|
187 |
+
import numpy as np
|
188 |
+
|
189 |
+
model = pickle.load(open('model.pkl','rb'))
|
190 |
+
|
191 |
+
def predictPos(TLaps,Laptime,Pit,Prev,AvgSpeed,AirTemp,TrackTemp,Humid,Wind):
|
192 |
+
input = np.array([ [TLaps,Laptime,Pit,Prev,AvgSpeed,AirTemp,TrackTemp,Humid,Wind]]).astype(np.float64)
|
193 |
+
prediction=model.predict(input)
|
194 |
+
return prediction[0]
|
195 |
+
|
196 |
+
def main():
|
197 |
+
st.title("title")
|
198 |
+
html_temp="""
|
199 |
+
<div style = "background-color:#025244; padding :10px">
|
200 |
+
<h2 style = "color:white; text-align:center;"> Driver Position Prediction </h2>
|
201 |
+
</div>
|
202 |
+
"""
|
203 |
+
st.markdown(html_temp, unsafe_allow_html=True)
|
204 |
+
TLaps = st.text_input("Enter the number of total laps in race: ","Type Here")
|
205 |
+
Laptime = st.text_input("Avg lap time from prev year (or estimate 98): ","Type Here")
|
206 |
+
Pit = st.text_input("Enter pit stop time (0 if no pit stop): ","Type Here")
|
207 |
+
Prev= st.text_input("Enter avg lap time differece (0-2) (0 if first lap): ","Type Here")
|
208 |
+
|
209 |
+
|
210 |
+
AvgSpeed = st.text_input("Enter average speed in km/h from prev year: ","Type Here")
|
211 |
+
AirTemp= st.text_input("estimate air temperature in Celsius on race day: ","Type Here")
|
212 |
+
TrackTemp = st.text_input("estimate track temperature in Celsius on race day: ","Type Here")
|
213 |
+
Humid = st.text_input("estimate the humidity percentage (0-100) on race day: ","Type Here")
|
214 |
+
Wind = st.text_input("estimate wind speed in km/h: ","Type Here")
|
215 |
+
safe_html="""
|
216 |
+
<div style="background-color:#F4D03F;padding:10px >
|
217 |
+
<h2 style="color:white;text-align:center;"> Your forest is safe</h2>
|
218 |
+
</div>
|
219 |
+
"""
|
220 |
+
danger_html="""
|
221 |
+
<div style="background-color:#F08080;padding:10px >
|
222 |
+
<h2 style="color:black ;text-align:center;"> Your forest is in danger</h2>
|
223 |
+
</div>
|
224 |
+
"""
|
225 |
+
|
226 |
+
if st.button("Predict"):
|
227 |
+
output=predictPos(TLaps,Laptime,Pit,Prev,AvgSpeed,AirTemp,TrackTemp,Humid,Wind)
|
228 |
+
st.success('The postion of driver is {}'.format(output))
|
229 |
+
|
230 |
+
# if output > 0.5:
|
231 |
+
# st.markdown(danger_html,unsafe_allow_html=True)
|
232 |
+
# else:
|
233 |
+
# st.markdown(safe_html,unsafe_allow_html=True)
|
234 |
+
|
235 |
+
if __name__=='__main__':
|
236 |
+
main()
|
237 |
+
|
238 |
+
|
239 |
+
|