#define train and fit model #differentiate into train and test code # service endpoint in seperate code- pass inputs to model convert it into json import pandas as pd import pickle from flask import Flask, request, jsonify # Create a Flask app app = Flask(__name__) # Load the machine learning model from a pickle file model = pickle.load(open("model.pkl", "rb")) @app.route('/keepalive', methods=['GET']) def api_health(): return jsonify(Message="Success") # Define a route for making predictions @app.route("/predict", methods=["POST"]) def predict(): # Get JSON data from the request json_ = request.json # Convert JSON data into a DataFrame df = pd.DataFrame(json_) # Use the loaded model to make predictions on the DataFrame prediction = model.predict(df) # Return the predictions as a JSON response return jsonify({"Prediction": list(prediction)}) # Run the Flask app when this script is executed if __name__ == "__main__": app.run(debug=True)