File size: 22,768 Bytes
21ac790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 |
"""Image processor class for Molmo"""
from typing import List, Optional, Union, Mapping
import numpy as np
import einops
import torch
import torchvision.transforms
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import convert_image_dtype
from transformers.image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ImageInput,
is_valid_image,
)
from transformers.processing_utils import ImagesKwargs
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
from transformers.utils import TensorType, is_vision_available, logging
logger = logging.get_logger(__name__)
def make_batched_images(images) -> List[List[ImageInput]]:
"""
Accepts images in list or nested list format, and makes a list of images for preprocessing.
Args:
images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`):
The input image.
Returns:
list: A list of images.
"""
if isinstance(images, (list, tuple)) and isinstance(images[0], (list, tuple)) and is_valid_image(images[0][0]):
return [img for img_list in images for img in img_list]
elif isinstance(images, (list, tuple)) and is_valid_image(images[0]):
return images
elif is_valid_image(images):
return [images]
raise ValueError(f"Could not make batched images from {images}")
def pad_to_bounding_box(
image, offset_height, offset_width, target_height,
target_width, value=0
):
height, width = image.shape[:2]
after_padding_width = target_width - offset_width - width
after_padding_height = target_height - offset_height - height
return np.pad(image, [
[offset_height, after_padding_height],
[offset_width, after_padding_width],
[0, 0]
], constant_values=value)
def normalize_image(image, offset, scale):
image -= np.array(offset, dtype=np.float32)[None, None, :]
image /= np.array(scale, dtype=np.float32)[None, None, :]
return image
def resize_and_pad(
image,
desired_output_size,
resize_method=InterpolationMode.BILINEAR,
pad_value=0,
normalize=True,
image_mean=OPENAI_CLIP_MEAN,
image_std=OPENAI_CLIP_STD,
):
desired_height, desired_width = desired_output_size
height, width = image.shape[:2]
# Cast into float32 since the training code did this in float32 and it (very rarely) effects
# the results after rounding.
image_scale_y = np.array(desired_height, np.float32) / np.array(height, np.float32)
image_scale_x = np.array(desired_width, np.float32) / np.array(width, np.float32)
image_scale = min(image_scale_x, image_scale_y)
scaled_height = int(np.array(height, np.float32) * image_scale)
scaled_width = int(np.array(width, np.float32) * image_scale)
# if resize_method == "tensorflow":
# FIXME remove
import tensorflow as tf
image = tf.image.convert_image_dtype(tf.constant(image), dtype=tf.float32)
image = tf.image.resize(
image,
[scaled_height, scaled_width],
method=tf.image.ResizeMethod.BILINEAR,
antialias=True,
)
image = tf.clip_by_value(image, 0.0, 1.0)
image = image.numpy()
# else:
# image = torch.permute(torch.from_numpy(image), [2, 0, 1])
# image = convert_image_dtype(image) # resize in flaot32
# image = torchvision.transforms.Resize(
# [scaled_height, scaled_width], InterpolationMode.BILINEAR, antialias=True
# )(image)
# image = torch.clip(image, 0.0, 1.0)
# image = torch.permute(image, [1, 2, 0]).numpy()
top_pad = (desired_height - scaled_height) // 2
left_pad = (desired_width - scaled_width) // 2
padding = [
[top_pad, desired_height - scaled_height - top_pad],
[left_pad, desired_width - scaled_width - left_pad],
[0, 0]
]
image_mask = np.pad(np.ones_like(image[:, :, 0], dtype=bool), padding[:2])
image = np.pad(image, padding, constant_values=pad_value)
if normalize:
image = normalize_image(image, offset=image_mean, scale=image_std)
return image, image_mask
def select_tiling(h, w, patch_size, max_num_patches):
"""Decide how best to divide in image of size [w, h] in up to max_num_patches of size patch_size"""
original_size = np.stack([h, w]) # [1, 2]
original_res = h * w
tilings = []
for i in range(1, max_num_patches+1):
for j in range(1, max_num_patches+1):
if i*j <= max_num_patches:
tilings.append((i, j))
# sort so argmin and argmax favour smaller tilings in the event of a tie
tilings.sort(key=lambda x: (x[0]*x[1], x[0]))
candidate_tilings = np.array(tilings, dtype=np.int32) # [n_resolutions, 2]
candidate_resolutions = candidate_tilings * patch_size # [n_resolutions, 2]
# How much we would need to scale the image to fit exactly in each tiling
original_size = np.stack([h, w], dtype=np.float32) # [1, 2]
required_scale_d = candidate_resolutions.astype(np.float32) / original_size
required_scale = np.min(required_scale_d, axis=-1, keepdims=True) # [n_resolutions, 1]
if np.all(required_scale < 1):
# We are forced to downscale, so try to minimize the amount of downscaling
ix = np.argmax(required_scale)
else:
# Pick the resolution that required the least upscaling so that it most closely fits the image
required_scale = np.where(required_scale < 1.0, 10e9, required_scale)
ix = np.argmin(required_scale)
return candidate_tilings[ix]
class MolmoImagesKwargs(ImagesKwargs, total=False):
max_crops: Optional[int]
overlap_margins: Optional[List[int]]
base_image_input_size: Optional[List[int]]
image_token_length_w: Optional[int]
image_token_length_h: Optional[int]
image_patch_size: Optional[int]
image_padding_mask: Optional[bool]
class MolmoImageProcessor(BaseImageProcessor):
"""Preprocess images and multi-model inputs"""
def __init__(
self,
max_crops: int = 12,
overlap_margins: List[int] = (4, 4),
base_image_input_size: List[int] = (336, 336),
image_token_length_w: int = 12,
image_token_length_h: int = 12,
image_patch_size: int = 14,
image_padding_mask: bool = True,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs,
):
super().__init__(**kwargs)
self.max_crops = max_crops
self.overlap_margins = overlap_margins
self.base_image_input_size = base_image_input_size
self.image_token_length_w = image_token_length_w
self.image_token_length_h = image_token_length_h
self.image_patch_size = image_patch_size
self.image_padding_mask = image_padding_mask
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
def image_to_patches_and_tokens(
self,
image: ImageInput,
image_patch_token_id: int,
image_col_token_id: int,
image_start_token_id: int,
image_end_token_id: int,
max_crops: Optional[int] = None,
overlap_margins: Optional[List[int]] = None,
base_image_input_size: Optional[Union[int, List[int]]] = None,
image_token_length_w: Optional[int] = None,
image_token_length_h: Optional[int] = None,
image_patch_size: Optional[int] = None,
):
"""Preprocesses an image
Returns:
crops: (n_crops, n_patches, patch_dim) individual crops, `n_crops` might
change between images but the other dimension are fixed
tokens: (n_tokens,) int32 tokens, pad tokens indicating where to insert the
patch features, might include other special tokens as well
patch_ordering: (n_crops, n_tokens_per_crop) order image features should be inserted
into the `tokens`, negative values indicates patches features to exclude
padding_mask: (n_crops, n_patches) what percent of each crop is padding, be None
if the image mask is not being used.
"""
if isinstance(base_image_input_size, int):
base_image_input_size = (base_image_input_size, base_image_input_size)
base_image_input_d = image_patch_size
tokens_per_image = image_token_length_w * image_token_length_h
image_base_patch_w = base_image_input_size[1] // base_image_input_d
image_base_patch_h = base_image_input_size[0] // base_image_input_d
original_image_h, original_image_w = image.shape[:2]
crop_size = base_image_input_size[0]
# Discard this many patches from the (left/top, right/bottom) of crops
left_margin, right_margin = overlap_margins
# left_margin, right_margin = 2, 2
assert left_margin % 2 == 0 # Required for compatibility with 2x2 pooling
total_margin_pixels = base_image_input_d*(right_margin + left_margin) # pixels removed per dim
crop_patches = base_image_input_size[0] // base_image_input_d # patches per crop dim
crop_window_patches = crop_patches - (right_margin + left_margin) # usable patches
crop_window_size = crop_window_patches * base_image_input_d
tiling = select_tiling(
original_image_h - total_margin_pixels,
original_image_w - total_margin_pixels,
crop_window_size,
max_crops
)
src, img_mask = resize_and_pad(
image,
[tiling[0]*crop_window_size+total_margin_pixels, tiling[1]*crop_window_size+total_margin_pixels]
)
# Now we have to split the image into crops, while keeping track of how each patch in the
# each crop should be ordered in the global image, this require a lot of tricky booking
n_crops = tiling[0] * tiling[1]
patches_arr = []
mask_arr = []
patch_ordering_arr = []
# We assume 2x2 pooling, but can allow padding the right/bottom with extra
# patches if the number of patches per side is not even
assert (crop_patches+1)//2 == image_token_length_h
assert (crop_patches+1)//2 == image_token_length_w
on = 0
on_patch = 0
for i in range(tiling[0]):
y0 = i*crop_window_size
if i == 0:
crop_y0 = 0
else:
crop_y0 = left_margin // 2
crop_h = image_base_patch_h - (right_margin + left_margin)
if i == 0:
crop_h += left_margin
if i == (tiling[0]-1):
crop_h += right_margin
for j in range(tiling[1]):
x0 = j*crop_window_size
if j == 0:
crop_x0 = 0
else:
crop_x0 = left_margin // 2
crop_w = image_base_patch_w - (right_margin + left_margin)
if j == 0:
crop_w += left_margin
if j == (tiling[1]-1):
crop_w += right_margin
pooled_w = (crop_w + 1) // 2
pooled_h = (crop_h + 1) // 2
patch_ordering_arr.append(
pad_to_bounding_box(
np.reshape(np.arange(on, on+pooled_h*pooled_w, dtype=np.int32), (pooled_h, pooled_w, 1)),
crop_y0, crop_x0, image_token_length_h, image_token_length_w, value=-1
)[:, :, 0]
)
patches_arr.append(src[y0:y0+crop_size, x0:x0+crop_size])
mask_arr.append(img_mask[y0:y0+crop_size, x0:x0+crop_size])
on += pooled_h*pooled_w
on_patch += 1
patches = np.stack(patches_arr)
patch_ordering = np.stack(patch_ordering_arr)
img_mask = np.stack(mask_arr)
# Switch to [n_crops, n_patches, pixels_per_patch] format
image_layout_impatch_w, image_layout_impatch_h = tiling[0], tiling[1]
patches = einops.rearrange(
patches, 'p (h dh) (w dw) c -> p (h w) (dh dw c)',
dh=base_image_input_d,
dw=base_image_input_d,
h=image_base_patch_h,
w=image_base_patch_w
)
img_mask = einops.rearrange(
img_mask, 'p (h dh) (w dw) -> p (h w) (dh dw)',
dh=base_image_input_d,
dw=base_image_input_d,
h=image_base_patch_h,
w=image_base_patch_w
)
img_mask = img_mask.astype(np.float32).mean(axis=-1)
patch_ordering = np.reshape(patch_ordering, [-1])
valid = patch_ordering >= 0
# Transpose order, to get left-to-right order instead of crop-by-crop order
patch_ordering_rh = np.reshape(
patch_ordering,
[tiling[0], tiling[1], image_token_length_h, image_token_length_w]
)
patch_ordering_rh = np.transpose(patch_ordering_rh, [0, 2, 1, 3])
patch_ordering_rh = np.reshape(patch_ordering_rh, [-1])
# The transpose will screw up which patches are masked, project the
# new order into sparse structure of `patch_ordering` to fix this
patch_ordering[valid] = patch_ordering_rh[patch_ordering_rh >= 0]
# Now build the output tokens
h = tiling[0] * crop_window_patches + (right_margin+left_margin)
w = tiling[1] * crop_window_patches + (right_margin+left_margin)
per_row = np.full(
((w+1)//2,),
image_patch_token_id,
)
per_row = np.concatenate([per_row, [image_col_token_id]], 0)
joint = np.tile(per_row, [(h+1)//2])
joint = [
[image_start_token_id],
joint,
[image_end_token_id]
]
# Finally do the same for the global image
resized, _ = resize_and_pad(image, base_image_input_size)
resized = einops.rearrange(
resized, '(h dh) (w dw) c -> (h w) (dh dw c)',
dh=base_image_input_d,
dw=base_image_input_d,
h=image_base_patch_h,
w=image_base_patch_w
)
patches = np.concatenate([np.expand_dims(resized, 0), patches], 0)
# Global image goes first, so the order of patches in previous crops gets increased
patch_ordering = np.where(
patch_ordering >= 0,
patch_ordering + tokens_per_image,
-1
)
patch_ordering = np.concatenate([np.arange(0, tokens_per_image), patch_ordering], 0)
per_row = np.full(
(image_token_length_w,),
image_patch_token_id,
)
per_row = np.concatenate([per_row, [image_col_token_id]], 0)
extra_tokens = np.tile(per_row, [image_token_length_h])
joint = [
[image_start_token_id],
extra_tokens,
[image_end_token_id],
] + joint
joint = np.concatenate(joint, 0)
img_mask = np.pad(img_mask, [[0, 1], [0, 0]], constant_values=-1)
return patches, joint, patch_ordering, img_mask
def build_image_input_idx(
self,
image_tokens: np.ndarray,
patch_order: np.ndarray,
image_patch_token_id: int,
no_image: Optional[bool] = None,
image_token_length_w: Optional[int] = None,
image_token_length_h: Optional[int] = None,
):
"""Converts `patch_order` into a mapping of token_id -> patch_id"""
tokens_per_image = image_token_length_w * image_token_length_h
if no_image is not None and no_image:
return np.zeros((0, tokens_per_image), np.int32)
# Indices to insert the patches
image_input_idx = image_tokens == image_patch_token_id
image_input_idx = np.nonzero(image_input_idx)[0].astype(np.int32)
if patch_order is not None:
n_tokens = image_input_idx.shape[0]
patch_order = np.reshape(patch_order, [-1])
n_patches = patch_order.shape[0]
valid = patch_order >= 0
n_valid_patches = valid.sum()
assert len(image_input_idx) == n_valid_patches
sorted_patch_ixs = np.zeros([n_tokens], np.int32)
sorted_patch_ixs[patch_order[valid]] = np.arange(n_valid_patches, dtype=np.int32)
# Project the inverted mapping into same sparse structure
sorted_patch_ixs_ex = np.full(np.shape(patch_order), -1)
sorted_patch_ixs_ex[valid] = sorted_patch_ixs
# Do the gather and then re-masked outputs that were masked in `sorted_patch_ixs`
valid = (sorted_patch_ixs_ex >= 0).astype(np.int32)
image_input_idx = image_input_idx[sorted_patch_ixs_ex*valid]
image_input_idx = image_input_idx*valid - 100*(1 - valid)
image_input_idx = np.reshape(image_input_idx, [-1, tokens_per_image])
return image_input_idx
def preprocess(
self,
image: np.ndarray,
image_patch_token_id: int,
image_col_token_id: int,
image_start_token_id: int,
image_end_token_id: int,
max_crops: Optional[int] = None,
overlap_margins: Optional[List[int]] = None,
base_image_input_size: Optional[Union[int, List[int]]] = None,
image_token_length_w: Optional[int] = None,
image_token_length_h: Optional[int] = None,
image_patch_size: Optional[int] = None,
**kwargs,
):
"""Preprocesses a single image"""
max_crops = max_crops or self.max_crops
overlap_margins = overlap_margins or self.overlap_margins
base_image_input_size = base_image_input_size or self.base_image_input_size
image_token_length_w = image_token_length_w or self.image_token_length_w
image_token_length_h = image_token_length_h or self.image_token_length_h
image_patch_size = image_patch_size or self.image_patch_size
crops, image_tokens, patch_ordering, img_mask = self.image_to_patches_and_tokens(
image,
image_patch_token_id,
image_col_token_id,
image_start_token_id,
image_end_token_id,
max_crops,
overlap_margins,
base_image_input_size,
image_token_length_w,
image_token_length_h,
image_patch_size,
)
patch_idx = self.build_image_input_idx(
image_tokens,
patch_ordering,
image_patch_token_id,
image_token_length_w=image_token_length_w,
image_token_length_h=image_token_length_h,
)
return crops, image_tokens, patch_idx, img_mask
def multimodal_preprocess(
self,
images: np.ndarray,
tokens: List[int],
image_idx: np.ndarray,
sequence_length: int,
image_patch_token_id: int,
image_col_token_id: int,
image_start_token_id: int,
image_end_token_id: int,
**kwargs,
):
"""Merge images and text tokens into multi-modal features for the model
:param images: images to use as input
:param tokens: input text tokens
:param image_idx: where to insert the images into `tokens`
:params image_patch_token_id: id to use of tokens that will contain image features
:params image_col_token_id: token id for image column special tokens
:params image_start_token_id: token id for image start special tokens
:params image_end_token_id: token id for image end special tokens
:params kwargs: override preprocessor default args
"""
max_total_crops = kwargs.get("max_crops") or self.max_crops
image_token_length_w = kwargs.get("image_token_length_w") or self.image_token_length_w
image_token_length_h = kwargs.get("image_token_length_h") or self.image_token_length_h
image_patch_size = kwargs.get("image_patch_size") or self.image_patch_size
base_image_input_size = kwargs.get("base_image_input_size") or self.base_image_input_size
image_num_patch = (
base_image_input_size[0] // image_patch_size,
base_image_input_size[1] // image_patch_size,
)
image_padding_mask = kwargs.get("image_padding_mask") or self.image_padding_mask
tokens_per_image = image_token_length_w * image_token_length_h
n_pixels = image_patch_size * image_patch_size * 3
n_patches = image_num_patch[0] * image_num_patch[1]
if images is None:
return {
"input_ids": tokens,
"images": None,
"image_input_idx": None
}
else:
n = len(images)
all_crops = []
all_image_idx = []
out_tokens = []
all_crop_masks = []
for ix in range(n):
token_ix = image_idx[ix]
crops, image_tokens, patch_idx, img_mask = self.preprocess(
images[ix],
image_patch_token_id,
image_col_token_id,
image_start_token_id,
image_end_token_id,
**kwargs,
)
if token_ix == -1: # -1 is an image inserted at the very start
start = 0
token_ix = 0
end = 0
else:
start = 0 if ix == 0 else image_idx[ix-1] + 1
end = token_ix + 1
all_image_idx.append(patch_idx + token_ix)
all_crops.append(crops)
out_tokens.append(tokens[start:token_ix])
out_tokens.append(image_tokens)
if ix == (n - 1):
out_tokens.append(tokens[end:])
if image_padding_mask:
all_crop_masks.append(img_mask)
input_ids = np.concatenate(out_tokens, 0)
images = np.concatenate(all_crops, 0)
image_input_idx = np.concatenate(all_image_idx, 0)
if image_padding_mask:
image_masks = np.concatenate(all_crop_masks, 0)
else:
image_masks = None
out = {
"input_ids": input_ids,
"images": images,
"image_input_idx": image_input_idx
}
if image_masks is not None:
out["image_masks"] = image_masks
return out |