Muennighoff
commited on
Commit
·
d13896f
1
Parent(s):
11742a6
Add
Browse files- aliases.py +7 -0
- checkpoint.py +2022 -0
- config.json +130 -16
- config_molmoe.py +907 -88
- modeling_molmoe.py +0 -0
- pytorch_model.bin +2 -2
- util.py +785 -0
aliases.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from os import PathLike
|
2 |
+
from typing import Union
|
3 |
+
|
4 |
+
__all__ = ["PathOrStr"]
|
5 |
+
|
6 |
+
|
7 |
+
PathOrStr = Union[str, PathLike]
|
checkpoint.py
ADDED
@@ -0,0 +1,2022 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gc
|
2 |
+
import io
|
3 |
+
import logging
|
4 |
+
import pickle
|
5 |
+
import shutil
|
6 |
+
import traceback
|
7 |
+
from abc import ABCMeta, abstractmethod
|
8 |
+
from collections import defaultdict
|
9 |
+
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor, as_completed
|
10 |
+
from contextlib import contextmanager
|
11 |
+
from copy import deepcopy
|
12 |
+
from dataclasses import dataclass, field, replace
|
13 |
+
from functools import reduce
|
14 |
+
from multiprocessing import shared_memory
|
15 |
+
from pathlib import Path
|
16 |
+
from typing import Any, Dict, Generator, List, Optional, Set, Tuple, cast
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import torch
|
20 |
+
import torch.distributed.checkpoint as dist_cp
|
21 |
+
import torch.multiprocessing as mp
|
22 |
+
import torch.nn as nn
|
23 |
+
from packaging import version
|
24 |
+
from torch.distributed import _remote_device
|
25 |
+
from torch.distributed._shard._utils import narrow_tensor_by_index
|
26 |
+
from torch.distributed._shard.metadata import ShardMetadata
|
27 |
+
from torch.distributed._shard.sharded_tensor import ShardedTensor
|
28 |
+
from torch.distributed.checkpoint.filesystem import WriteResult, _StorageInfo
|
29 |
+
from torch.distributed.checkpoint.metadata import Metadata, MetadataIndex
|
30 |
+
from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict
|
31 |
+
from torch.distributed.checkpoint.planner import LoadItemType, ReadItem
|
32 |
+
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
|
33 |
+
from torch.distributed.fsdp import StateDictType
|
34 |
+
from torch.distributed.fsdp.api import (
|
35 |
+
FullOptimStateDictConfig,
|
36 |
+
FullStateDictConfig,
|
37 |
+
ShardedOptimStateDictConfig,
|
38 |
+
ShardedStateDictConfig,
|
39 |
+
)
|
40 |
+
from torch.futures import Future
|
41 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
42 |
+
|
43 |
+
try:
|
44 |
+
from torch.distributed.fsdp.flat_param import FlatParamHandle # type: ignore
|
45 |
+
except ModuleNotFoundError:
|
46 |
+
from torch.distributed.fsdp._flat_param import FlatParamHandle # type: ignore
|
47 |
+
|
48 |
+
from olmo import util
|
49 |
+
|
50 |
+
from .aliases import PathOrStr
|
51 |
+
from .config import BaseConfig, ShardedCheckpointerType, TrainConfig
|
52 |
+
from .exceptions import OLMoCheckpointError
|
53 |
+
from .optim import Optimizer, fix_optim_state_dict
|
54 |
+
from .safetensors_util import safetensors_file_to_state_dict
|
55 |
+
from .torch_util import (
|
56 |
+
barrier,
|
57 |
+
gc_cuda,
|
58 |
+
get_fs_local_rank,
|
59 |
+
get_global_rank,
|
60 |
+
get_local_rank,
|
61 |
+
get_local_world_size,
|
62 |
+
get_world_size,
|
63 |
+
)
|
64 |
+
from .util import (
|
65 |
+
_get_s3_client,
|
66 |
+
default_thread_count,
|
67 |
+
dir_is_empty,
|
68 |
+
get_bytes_range,
|
69 |
+
get_progress_bar,
|
70 |
+
resource_path,
|
71 |
+
upload,
|
72 |
+
wait_for,
|
73 |
+
)
|
74 |
+
|
75 |
+
__all__ = [
|
76 |
+
"save_fsdp_model_and_optim_state",
|
77 |
+
"load_fsdp_model_and_optim_state",
|
78 |
+
"load_fsdp_optim_state",
|
79 |
+
"save_state_dict",
|
80 |
+
"load_state_dict",
|
81 |
+
"load_model_state",
|
82 |
+
"RemoteFileSystemWriter",
|
83 |
+
"RemoteFileSystemReader",
|
84 |
+
"Checkpointer",
|
85 |
+
"FullCheckpointer",
|
86 |
+
"TorchNewStyleShardedCheckpointer",
|
87 |
+
"TorchLegacyShardedCheckpointer",
|
88 |
+
"LocalShardedCheckpointer",
|
89 |
+
"build_sharded_checkpointer",
|
90 |
+
]
|
91 |
+
|
92 |
+
|
93 |
+
log = logging.getLogger(__name__)
|
94 |
+
|
95 |
+
MODEL_AND_OPTIM_FOLDER = "model_and_optim"
|
96 |
+
|
97 |
+
|
98 |
+
def save_fsdp_model_and_optim_state(
|
99 |
+
checkpoint_dir: PathOrStr,
|
100 |
+
fsdp_model: FSDP,
|
101 |
+
optim: Optimizer,
|
102 |
+
*,
|
103 |
+
upload_to: Optional[str] = None,
|
104 |
+
save_overwrite: bool = False,
|
105 |
+
):
|
106 |
+
"""
|
107 |
+
Use this to save a state dict for an FSDP model and its optimizer via :module:`torch.distributed.checkpoint`
|
108 |
+
functions. This should be used during distributed training and should be called by all ranks.
|
109 |
+
|
110 |
+
:param checkpoint_dir: The directory to save to.
|
111 |
+
:param fsdp_model: The FSDP model.
|
112 |
+
:param optim: The FSDP model's optimizer.
|
113 |
+
:param upload_to: Optional, a remote "directory" to upload the checkpoint files to.
|
114 |
+
:param save_overwrite: Overwrite existing files.
|
115 |
+
|
116 |
+
:raises FileExistsError: If a model and optim checkpoint already exists in ``checkpoint_dir`` and ``save_overwrite=False``.
|
117 |
+
"""
|
118 |
+
checkpoint_dir = Path(checkpoint_dir)
|
119 |
+
target_dir = checkpoint_dir / MODEL_AND_OPTIM_FOLDER
|
120 |
+
if save_overwrite:
|
121 |
+
if get_fs_local_rank() == 0:
|
122 |
+
shutil.rmtree(target_dir, ignore_errors=True)
|
123 |
+
elif not dir_is_empty(target_dir):
|
124 |
+
raise FileExistsError(target_dir)
|
125 |
+
barrier()
|
126 |
+
if get_fs_local_rank() == 0:
|
127 |
+
target_dir.mkdir(exist_ok=True, parents=True)
|
128 |
+
barrier()
|
129 |
+
with FSDP.state_dict_type(
|
130 |
+
fsdp_model,
|
131 |
+
state_dict_type=StateDictType.SHARDED_STATE_DICT,
|
132 |
+
state_dict_config=ShardedStateDictConfig(offload_to_cpu=True),
|
133 |
+
optim_state_dict_config=ShardedOptimStateDictConfig(offload_to_cpu=True),
|
134 |
+
):
|
135 |
+
model_and_optim_state = {
|
136 |
+
"model": fsdp_model.state_dict(),
|
137 |
+
"optim": FSDP.optim_state_dict(fsdp_model, optim),
|
138 |
+
}
|
139 |
+
dist_cp.save_state_dict(
|
140 |
+
model_and_optim_state,
|
141 |
+
RemoteFileSystemWriter(
|
142 |
+
target_dir,
|
143 |
+
upload_to=None if upload_to is None else f"{upload_to.rstrip('/')}/{MODEL_AND_OPTIM_FOLDER}",
|
144 |
+
save_overwrite=save_overwrite,
|
145 |
+
),
|
146 |
+
)
|
147 |
+
|
148 |
+
|
149 |
+
def load_fsdp_model_and_optim_state(
|
150 |
+
checkpoint_dir: PathOrStr,
|
151 |
+
fsdp_model: FSDP,
|
152 |
+
optim: Optimizer,
|
153 |
+
*,
|
154 |
+
local_cache: Optional[PathOrStr] = None,
|
155 |
+
load_optimizer_state: bool = True,
|
156 |
+
):
|
157 |
+
"""
|
158 |
+
Use this to load a state dict for an FSDP model and its optimizer via :module:`torch.distributed.checkpoint`
|
159 |
+
functions. This should be used during distributed training and should be called by all ranks.
|
160 |
+
|
161 |
+
:param checkpoint_dir: The checkpoint directory to load from. This can be a local or remote directory.
|
162 |
+
:param fsdp_model: The FSDP model.
|
163 |
+
:param optim: The FSDP model's optimizer.
|
164 |
+
:param local_cache: A local cache of the checkpoint directory. Use this when the ``checkpoint_dir`` is a
|
165 |
+
remote "directory" but there might be a cached version of the same artifacts.
|
166 |
+
:param load_optimizer_state: Set to ``False`` to skip loading the optimizer state.
|
167 |
+
|
168 |
+
:raises FileNotFoundError: If the ``checkpoint_dir`` doesn't contain a model and optimizer checkpoint.
|
169 |
+
"""
|
170 |
+
load_path = str(checkpoint_dir).rstrip("/")
|
171 |
+
local_cache = None if local_cache is None else Path(local_cache)
|
172 |
+
with FSDP.state_dict_type(
|
173 |
+
fsdp_model,
|
174 |
+
state_dict_type=StateDictType.SHARDED_STATE_DICT,
|
175 |
+
state_dict_config=ShardedStateDictConfig(offload_to_cpu=True),
|
176 |
+
optim_state_dict_config=ShardedOptimStateDictConfig(offload_to_cpu=True),
|
177 |
+
):
|
178 |
+
# Load the model state dict in place.
|
179 |
+
log.info("Loading model state...")
|
180 |
+
model_state = {"model": fsdp_model.state_dict()}
|
181 |
+
dist_cp.load_state_dict(
|
182 |
+
model_state,
|
183 |
+
RemoteFileSystemReader(
|
184 |
+
f"{load_path}/{MODEL_AND_OPTIM_FOLDER}",
|
185 |
+
local_cache=None if local_cache is None else local_cache / MODEL_AND_OPTIM_FOLDER,
|
186 |
+
),
|
187 |
+
)
|
188 |
+
fsdp_model.load_state_dict(model_state["model"])
|
189 |
+
|
190 |
+
if not load_optimizer_state:
|
191 |
+
return
|
192 |
+
|
193 |
+
# Load optim state dict in place.
|
194 |
+
log.info("Loading sharded optimizer state...")
|
195 |
+
optim_state = load_sharded_optimizer_state_dict(
|
196 |
+
model_state_dict=model_state["model"],
|
197 |
+
optimizer_key="optim",
|
198 |
+
storage_reader=RemoteFileSystemReader(
|
199 |
+
f"{load_path}/{MODEL_AND_OPTIM_FOLDER}",
|
200 |
+
local_cache=None if local_cache is None else local_cache / MODEL_AND_OPTIM_FOLDER,
|
201 |
+
),
|
202 |
+
)
|
203 |
+
# optim_state["optim"] = {
|
204 |
+
# 'state': { fqn: { 'grad_norm_exp_avg': Tensor, 'step': Tensor, 'exp_avg': ShardedTensor, 'exp_avg_sq': ShardedTensor } },
|
205 |
+
# 'param_groups': [{ 'param_names': [ fsdp_fqn, ... ], 'params': [ fqn, ... ], ... }],
|
206 |
+
# }
|
207 |
+
del model_state
|
208 |
+
|
209 |
+
# Make sure tensors are on CPU! PyTorch puts them on GPU even though we have `offload_to_cpu=True`.
|
210 |
+
for state in optim_state["optim"]["state"].values():
|
211 |
+
for k in state.keys():
|
212 |
+
state[k] = state[k].cpu()
|
213 |
+
gc_cuda()
|
214 |
+
|
215 |
+
load_fsdp_optim_state(fsdp_model, optim, optim_state["optim"])
|
216 |
+
|
217 |
+
|
218 |
+
def load_fsdp_optim_state(fsdp_model: FSDP, optim: Optimizer, optim_state: Dict[str, Any]):
|
219 |
+
log.info("Flattening sharded optimizer state...")
|
220 |
+
# flattened_osd = {
|
221 |
+
# 'state': { id: { 'grad_norm_exp_avg': Tensor, 'step': Tensor, 'exp_avg': Tensor, 'exp_avg_sq': Tensor } },
|
222 |
+
# 'param_groups': [{ 'param_names': [ fsdp_fqn, ... ], 'params': [ id, ... ], ... }],
|
223 |
+
# }
|
224 |
+
# NOTE: Careful! The order of the these arguments has changed from 2.0 to 2.1... ¯\_(ツ)_/¯
|
225 |
+
if version.parse(torch.__version__) < version.parse("2.1.0"):
|
226 |
+
flattened_osd = FSDP.optim_state_dict_to_load(optim_state, fsdp_model, optim) # type: ignore
|
227 |
+
else:
|
228 |
+
flattened_osd = FSDP.optim_state_dict_to_load(fsdp_model, optim, optim_state) # type: ignore
|
229 |
+
|
230 |
+
del optim_state
|
231 |
+
gc_cuda()
|
232 |
+
|
233 |
+
log.info("Loading flattened optimizer state...")
|
234 |
+
|
235 |
+
# Put optim state on CPU since `Optimizer.load_state_dict()` will create a deepcopy of the whole state dict,
|
236 |
+
# which takes up unnecessary GPU memory.
|
237 |
+
for state in flattened_osd["state"].values():
|
238 |
+
for k in state.keys():
|
239 |
+
state[k] = state[k].cpu()
|
240 |
+
gc_cuda()
|
241 |
+
|
242 |
+
optim.load_state_dict(fix_optim_state_dict(optim, flattened_osd))
|
243 |
+
|
244 |
+
|
245 |
+
def save_state_dict(
|
246 |
+
checkpoint_dir: PathOrStr,
|
247 |
+
fname: str,
|
248 |
+
state_dict: Dict[str, Any],
|
249 |
+
*,
|
250 |
+
upload_to: Optional[str] = None,
|
251 |
+
save_overwrite: bool = False,
|
252 |
+
synchronize: bool = True,
|
253 |
+
):
|
254 |
+
"""
|
255 |
+
Save a regular state dict to the file ``fname`` within ``checkpoint_dir`` using :func:`torch.save()`.
|
256 |
+
This can be used during distributed training or not. If during distributed training the ``fname`` should be unique
|
257 |
+
for each rank.
|
258 |
+
|
259 |
+
:param checkpoint_dir: The directory to save to.
|
260 |
+
:param fname: The target file within ``checkpoint_dir`` to save to. This should be a path relative to the ``checkpoint_dir``.
|
261 |
+
:param state_dict: The state dict to save.
|
262 |
+
:param upload_to: Optional, a remote "directory" to upload the file to.
|
263 |
+
:param save_overwrite: Overwrite existing files.
|
264 |
+
:param synchronize: If ``False``, don't do any distributed synchronization. Use this when only calling
|
265 |
+
this function from a single rank.
|
266 |
+
|
267 |
+
:raises FileExistsError: If the ``fname`` already exists within ``checkpoint_dir`` and ``save_overwrite=False``.
|
268 |
+
"""
|
269 |
+
checkpoint_dir = Path(checkpoint_dir)
|
270 |
+
target_path = checkpoint_dir / fname
|
271 |
+
if save_overwrite:
|
272 |
+
target_path.unlink(missing_ok=True)
|
273 |
+
elif target_path.is_file():
|
274 |
+
raise FileExistsError(target_path)
|
275 |
+
if synchronize:
|
276 |
+
barrier()
|
277 |
+
target_path.parent.mkdir(exist_ok=True, parents=True)
|
278 |
+
if synchronize:
|
279 |
+
barrier()
|
280 |
+
torch.save(state_dict, target_path)
|
281 |
+
if upload_to is not None:
|
282 |
+
upload_target = f"{upload_to.rstrip('/')}/{fname}"
|
283 |
+
log.info(f"Uploading {target_path} to {upload_target}...")
|
284 |
+
upload(target_path, upload_target, save_overwrite=save_overwrite)
|
285 |
+
|
286 |
+
|
287 |
+
def load_state_dict(
|
288 |
+
checkpoint_dir: PathOrStr,
|
289 |
+
fname: str,
|
290 |
+
*,
|
291 |
+
local_cache: Optional[PathOrStr] = None,
|
292 |
+
map_location: Optional[str] = None,
|
293 |
+
):
|
294 |
+
"""
|
295 |
+
Load a regular state dict from the file ``fname`` within ``checkpoint_dir`` using :func:`torch.load()`.
|
296 |
+
This can be used during distributed training or not.
|
297 |
+
|
298 |
+
:param checkpoint_dir: A local or remote checkpoint directory.
|
299 |
+
:param fname: The target file within the ``checkpoint_dir``. This should be a path relative to the ``checkpoint_dir``.
|
300 |
+
:param local_cache: A local cache of the checkpoint directory. Use this when the ``checkpoint_dir`` is a
|
301 |
+
remote "directory" but there might be a cached version of the same artifacts.
|
302 |
+
|
303 |
+
:raises FileNotFoundError: If ``fname`` doesn't exist in the ``checkpoint_dir`` or the local cache.
|
304 |
+
"""
|
305 |
+
if fname.endswith(".pt"):
|
306 |
+
# Try safetensors version first.
|
307 |
+
try:
|
308 |
+
path = resource_path(
|
309 |
+
str(checkpoint_dir).rstrip("/"), fname[:-2] + "safetensors", local_cache=local_cache
|
310 |
+
)
|
311 |
+
return safetensors_file_to_state_dict(path, map_location=map_location)
|
312 |
+
except FileNotFoundError:
|
313 |
+
pass
|
314 |
+
|
315 |
+
path = resource_path(str(checkpoint_dir).rstrip("/"), fname, local_cache=local_cache)
|
316 |
+
return torch.load(path, map_location=map_location)
|
317 |
+
|
318 |
+
|
319 |
+
def load_model_state(checkpoint_dir: PathOrStr, model: torch.nn.Module):
|
320 |
+
"""
|
321 |
+
Load model state from a distributed FSDP model checkpoint created from :func:`save_fsdp_model_and_optim_state()`.
|
322 |
+
Note that ``model`` should not be wrapped with FSDP.
|
323 |
+
"""
|
324 |
+
state_dict = {"model": model.state_dict()}
|
325 |
+
dist_cp.load_state_dict(
|
326 |
+
state_dict,
|
327 |
+
RemoteFileSystemReader(f"{str(checkpoint_dir).rstrip('/')}/{MODEL_AND_OPTIM_FOLDER}"),
|
328 |
+
no_dist=True,
|
329 |
+
)
|
330 |
+
model.load_state_dict(state_dict["model"])
|
331 |
+
|
332 |
+
|
333 |
+
class RemoteFileSystemWriter(dist_cp.FileSystemWriter):
|
334 |
+
"""
|
335 |
+
A subclass of :class:`~torch.distributed.checkpoint.FileSystemWriter` that can upload files
|
336 |
+
directly to a cloud bucket when ``upload_to`` is specified.
|
337 |
+
"""
|
338 |
+
|
339 |
+
def __init__(
|
340 |
+
self,
|
341 |
+
path: PathOrStr,
|
342 |
+
single_file_per_rank: bool = True,
|
343 |
+
sync_files: bool = True,
|
344 |
+
thread_count: Optional[int] = None,
|
345 |
+
per_thread_copy_ahead: int = 10_000_000,
|
346 |
+
upload_to: Optional[str] = None,
|
347 |
+
save_overwrite: bool = False,
|
348 |
+
) -> None:
|
349 |
+
if thread_count is not None and thread_count <= 0:
|
350 |
+
raise ValueError("thread count must be at least 1")
|
351 |
+
super().__init__(
|
352 |
+
path,
|
353 |
+
single_file_per_rank=single_file_per_rank,
|
354 |
+
sync_files=sync_files,
|
355 |
+
# NOTE: we default to 1 thread here instead of whatever `default_thread_count()`
|
356 |
+
# returns because uploading big checkpoint files with multiple threads causes
|
357 |
+
# boto3 to fail in weird ways.
|
358 |
+
thread_count=thread_count or 1,
|
359 |
+
per_thread_copy_ahead=per_thread_copy_ahead,
|
360 |
+
)
|
361 |
+
self.upload_to = None if upload_to is None else upload_to.rstrip("/")
|
362 |
+
self.save_overwrite = save_overwrite
|
363 |
+
|
364 |
+
def write_data(
|
365 |
+
self,
|
366 |
+
plan: dist_cp.SavePlan,
|
367 |
+
planner: dist_cp.SavePlanner,
|
368 |
+
) -> Future[List[WriteResult]]:
|
369 |
+
fut = super().write_data(plan, planner)
|
370 |
+
if self.upload_to is not None:
|
371 |
+
files_to_upload = set()
|
372 |
+
for write_result in fut.wait():
|
373 |
+
files_to_upload.add(write_result.storage_data.relative_path)
|
374 |
+
|
375 |
+
# Create the global S3 client up front to work around a threading issue in boto.
|
376 |
+
if self.upload_to.startswith("s3://"):
|
377 |
+
_get_s3_client("s3")
|
378 |
+
elif self.upload_to.startswith("r2://"):
|
379 |
+
_get_s3_client("r2")
|
380 |
+
elif self.upload_to.startswith("weka://"):
|
381 |
+
_get_s3_client("weka")
|
382 |
+
|
383 |
+
with ThreadPoolExecutor(max_workers=self.thread_count) as executor:
|
384 |
+
futures = []
|
385 |
+
for fname in files_to_upload:
|
386 |
+
source = self.path / fname
|
387 |
+
target = f"{self.upload_to}/{fname}"
|
388 |
+
log.info(f"Uploading {source} to {target}...")
|
389 |
+
futures.append(executor.submit(upload, source, target, save_overwrite=self.save_overwrite))
|
390 |
+
for f in as_completed(futures):
|
391 |
+
try:
|
392 |
+
f.result()
|
393 |
+
except BaseException:
|
394 |
+
# NOTE: we might get an error here that can't be pickled, which causes a different failure
|
395 |
+
# later when PyTorch tries to reduce that error across ranks. So here we just make
|
396 |
+
# sure we're raising a simple error type that can be pickled.
|
397 |
+
raise OLMoCheckpointError(f"Original error:\n{traceback.format_exc()}")
|
398 |
+
return fut
|
399 |
+
|
400 |
+
def finish(self, metadata: Metadata, results: List[List[WriteResult]]) -> None:
|
401 |
+
super().finish(metadata, results)
|
402 |
+
if self.upload_to is not None:
|
403 |
+
source = self.path / ".metadata"
|
404 |
+
target = f"{self.upload_to}/.metadata"
|
405 |
+
log.info(f"Uploading {source} to {target}...")
|
406 |
+
upload(source, target, save_overwrite=self.save_overwrite)
|
407 |
+
|
408 |
+
|
409 |
+
class RemoteFileSystemReader(dist_cp.StorageReader):
|
410 |
+
"""
|
411 |
+
A :class:`~torch.distributed.checkpoint.StorageReader` based on :class:`~torch.distributed.checkpoint.FileSystemReader`
|
412 |
+
that can read data directly from cloud storage as well as a local directory.
|
413 |
+
"""
|
414 |
+
|
415 |
+
def __init__(
|
416 |
+
self, path: PathOrStr, *, local_cache: Optional[PathOrStr] = None, thread_count: Optional[int] = None
|
417 |
+
):
|
418 |
+
super().__init__()
|
419 |
+
if thread_count is not None and thread_count <= 0:
|
420 |
+
raise ValueError("thread count must be at least 1")
|
421 |
+
self.path = str(path).rstrip("/")
|
422 |
+
self.cache = None if local_cache is None else Path(local_cache)
|
423 |
+
self.thread_count = thread_count or default_thread_count()
|
424 |
+
self.storage_data: Dict[MetadataIndex, _StorageInfo] = dict()
|
425 |
+
self._metadata: Optional[Metadata] = None
|
426 |
+
|
427 |
+
def _get_bytes(self, relative_path: str, offset: int, length: int) -> bytes:
|
428 |
+
if self.cache is not None and (path := self.cache / relative_path).is_file():
|
429 |
+
return get_bytes_range(path, offset, length)
|
430 |
+
else:
|
431 |
+
return get_bytes_range(f"{self.path}/{relative_path}", offset, length)
|
432 |
+
|
433 |
+
def _get_content_for_read(self, read_item: ReadItem) -> Tuple[ReadItem, bytes]:
|
434 |
+
sinfo = self.storage_data[read_item.storage_index]
|
435 |
+
content = self._get_bytes(sinfo.relative_path, sinfo.offset, sinfo.length)
|
436 |
+
return (read_item, content)
|
437 |
+
|
438 |
+
def read_data(self, plan: dist_cp.LoadPlan, planner: dist_cp.LoadPlanner) -> Future[None]:
|
439 |
+
# Create the global S3 client up front to work around a threading issue in boto.
|
440 |
+
if isinstance(self.path, str):
|
441 |
+
if self.path.startswith("s3://"):
|
442 |
+
_get_s3_client("s3")
|
443 |
+
elif self.path.startswith("r2://"):
|
444 |
+
_get_s3_client("r2")
|
445 |
+
elif self.path.startswith("weka://"):
|
446 |
+
_get_s3_client("weka")
|
447 |
+
|
448 |
+
with ThreadPoolExecutor(max_workers=self.thread_count) as executor:
|
449 |
+
read_item_content_futures = []
|
450 |
+
for read_item in plan.items:
|
451 |
+
read_item_content_futures.append(executor.submit(self._get_content_for_read, read_item))
|
452 |
+
read_item_content_results = []
|
453 |
+
for f in as_completed(read_item_content_futures):
|
454 |
+
try:
|
455 |
+
read_item_content_results.append(f.result())
|
456 |
+
except BaseException:
|
457 |
+
# NOTE: we might get an error here that can't be pickled, which causes a different failure
|
458 |
+
# later when PyTorch tries to reduce that error across ranks. So here we just make
|
459 |
+
# sure we're raising a simple error type that can be pickled.
|
460 |
+
raise OLMoCheckpointError(f"Original error:\n{traceback.format_exc()}")
|
461 |
+
|
462 |
+
# Modified from `FileSystemReader.read_data()`
|
463 |
+
for read_item, content in read_item_content_results:
|
464 |
+
bytes = io.BytesIO(content)
|
465 |
+
bytes.seek(0)
|
466 |
+
if read_item.type == LoadItemType.BYTE_IO:
|
467 |
+
planner.load_bytes(read_item, bytes)
|
468 |
+
else:
|
469 |
+
tensor = cast(torch.Tensor, torch.load(bytes, map_location="cpu"))
|
470 |
+
tensor = narrow_tensor_by_index(tensor, read_item.storage_offsets, read_item.lengths)
|
471 |
+
target_tensor = planner.resolve_tensor(read_item).detach()
|
472 |
+
|
473 |
+
assert (
|
474 |
+
target_tensor.size() == tensor.size()
|
475 |
+
), f"req {read_item.storage_index} mismatch sizes {target_tensor.size()} vs {tensor.size()}"
|
476 |
+
target_tensor.copy_(tensor)
|
477 |
+
planner.commit_tensor(read_item, target_tensor)
|
478 |
+
|
479 |
+
fut: Future = Future()
|
480 |
+
fut.set_result(None)
|
481 |
+
return fut
|
482 |
+
|
483 |
+
def read_metadata(self) -> Metadata:
|
484 |
+
if self._metadata is None:
|
485 |
+
with resource_path(self.path, ".metadata", local_cache=self.cache).open("rb") as metadata_file:
|
486 |
+
self._metadata = pickle.load(metadata_file)
|
487 |
+
return self._metadata
|
488 |
+
|
489 |
+
def set_up_storage_reader(self, metadata: Metadata, is_coordinator: bool) -> None:
|
490 |
+
del is_coordinator
|
491 |
+
self.storage_data = metadata.storage_data
|
492 |
+
assert self.storage_data is not None
|
493 |
+
|
494 |
+
def prepare_local_plan(self, plan: dist_cp.LoadPlan) -> dist_cp.LoadPlan:
|
495 |
+
return plan
|
496 |
+
|
497 |
+
def prepare_global_plan(self, global_plan: List[dist_cp.LoadPlan]) -> List[dist_cp.LoadPlan]:
|
498 |
+
return global_plan
|
499 |
+
|
500 |
+
|
501 |
+
class Checkpointer(metaclass=ABCMeta):
|
502 |
+
def __init__(self, cfg: TrainConfig, thread_count: Optional[int] = None):
|
503 |
+
self.cfg = cfg
|
504 |
+
self.thread_count = thread_count or default_thread_count()
|
505 |
+
|
506 |
+
@abstractmethod
|
507 |
+
def save_checkpoint(
|
508 |
+
self,
|
509 |
+
dir: PathOrStr,
|
510 |
+
dist_model: nn.Module,
|
511 |
+
optim: Optimizer,
|
512 |
+
train_state: Dict[str, Any],
|
513 |
+
*,
|
514 |
+
upload_to: Optional[str] = None,
|
515 |
+
) -> None:
|
516 |
+
raise NotImplementedError
|
517 |
+
|
518 |
+
@abstractmethod
|
519 |
+
def restore_checkpoint(
|
520 |
+
self,
|
521 |
+
load_path: PathOrStr,
|
522 |
+
dist_model: nn.Module,
|
523 |
+
optim: Optimizer,
|
524 |
+
*,
|
525 |
+
local_cache: Optional[PathOrStr] = None,
|
526 |
+
load_optimizer_state: bool = True,
|
527 |
+
) -> Dict[str, Any]:
|
528 |
+
"""
|
529 |
+
Restores a checkpoint to the model and optimizer. Returns the remaining trainer state.
|
530 |
+
"""
|
531 |
+
raise NotImplementedError
|
532 |
+
|
533 |
+
def unshard_checkpoint(
|
534 |
+
self,
|
535 |
+
load_path: PathOrStr,
|
536 |
+
*,
|
537 |
+
local_cache: Optional[PathOrStr] = None,
|
538 |
+
load_optimizer_state: bool = True,
|
539 |
+
load_trainer_state: bool = True,
|
540 |
+
device: Optional[torch.device] = None,
|
541 |
+
) -> Tuple[Dict[str, torch.Tensor], Optional[Dict[str, Any]], Optional[Dict[str, Any]]]:
|
542 |
+
"""
|
543 |
+
Unshard a checkpoint.
|
544 |
+
|
545 |
+
Note this is not marked abstract because child classes are not required to implemented this.
|
546 |
+
"""
|
547 |
+
raise NotImplementedError
|
548 |
+
|
549 |
+
@contextmanager
|
550 |
+
def _temporary_wd(self, dir: PathOrStr) -> Generator[Path, None, None]:
|
551 |
+
# Make sure checkpoint directory doesn't exist unless it's okay to overwrite it.
|
552 |
+
checkpoint_dir = Path(dir)
|
553 |
+
if not dir_is_empty(checkpoint_dir):
|
554 |
+
if self.cfg.save_overwrite:
|
555 |
+
if get_fs_local_rank() == 0:
|
556 |
+
shutil.rmtree(checkpoint_dir, ignore_errors=True)
|
557 |
+
else:
|
558 |
+
raise FileExistsError(checkpoint_dir)
|
559 |
+
# No need to mkdir here since we'll directly replace the temporary directory with
|
560 |
+
# this directory below.
|
561 |
+
barrier()
|
562 |
+
|
563 |
+
# Prepare temporary directory. We don't have to be as careful here, we can
|
564 |
+
# just remove it if it already exists.
|
565 |
+
checkpoint_dir_tmp = checkpoint_dir.with_name(checkpoint_dir.name + "-tmp")
|
566 |
+
if get_fs_local_rank() == 0:
|
567 |
+
shutil.rmtree(checkpoint_dir_tmp, ignore_errors=True)
|
568 |
+
checkpoint_dir_tmp.mkdir(exist_ok=True, parents=True)
|
569 |
+
|
570 |
+
# In the cases where we're using a shared NFS drive between ranks to save checkpoints,
|
571 |
+
# creating the temp directory from rank 0 might not be immediately
|
572 |
+
# realized in the file systems of the other ranks.
|
573 |
+
# So we wait here across all ranks until that tmp checkpoint directory is visible.
|
574 |
+
wait_for(lambda: checkpoint_dir_tmp.exists(), "Waiting for checkpoint directory", timeout=10.0)
|
575 |
+
|
576 |
+
barrier()
|
577 |
+
|
578 |
+
# Yield temporary directory for `.save_checkpoint()` to use.
|
579 |
+
yield checkpoint_dir_tmp
|
580 |
+
|
581 |
+
barrier()
|
582 |
+
|
583 |
+
# Finally if all went well replace the temporary directory with the actual
|
584 |
+
# checkpoint directory.
|
585 |
+
if get_fs_local_rank() == 0:
|
586 |
+
# Replace temp directory with target checkpoint directory.
|
587 |
+
try:
|
588 |
+
checkpoint_dir_tmp.replace(checkpoint_dir)
|
589 |
+
except FileNotFoundError:
|
590 |
+
# Caught when another (file-system) local rank 0 has already replaced the tmp directory.
|
591 |
+
# This can happen when nodes are saving to a common NFS drive but otherwise have distinct
|
592 |
+
# file-systems.
|
593 |
+
if not checkpoint_dir.exists():
|
594 |
+
raise
|
595 |
+
|
596 |
+
# In the cases where we're using a shared NFS drive between ranks to save checkpoints,
|
597 |
+
# replacing the temp directory with the final directory from rank 0 might not be immediately
|
598 |
+
# realized in the file systems of the other ranks.
|
599 |
+
# So we wait here across all ranks until that final checkpoint directory is visible.
|
600 |
+
wait_for(lambda: checkpoint_dir.exists(), "Waiting for checkpoint directory", timeout=10.0)
|
601 |
+
|
602 |
+
barrier()
|
603 |
+
|
604 |
+
def _save_config(self, dir: PathOrStr, *, upload_to: Optional[str] = None) -> None:
|
605 |
+
if get_global_rank() == 0:
|
606 |
+
log.info("Saving config...")
|
607 |
+
self.cfg.save(config_path := Path(dir) / "config.yaml")
|
608 |
+
if upload_to is not None:
|
609 |
+
upload_target = f"{upload_to}/config.yaml"
|
610 |
+
log.info(f"Uploading {config_path} to {upload_target}")
|
611 |
+
upload(config_path, upload_target, save_overwrite=self.cfg.save_overwrite)
|
612 |
+
|
613 |
+
|
614 |
+
class FullCheckpointer(Checkpointer):
|
615 |
+
"""
|
616 |
+
A :class:`Checkpointer` that saves a single full model and optimizer state dictionary.
|
617 |
+
"""
|
618 |
+
|
619 |
+
def save_checkpoint(
|
620 |
+
self,
|
621 |
+
dir: PathOrStr,
|
622 |
+
dist_model: nn.Module,
|
623 |
+
optim: Optimizer,
|
624 |
+
trainer_state: Dict[str, Any],
|
625 |
+
*,
|
626 |
+
upload_to: Optional[str] = None,
|
627 |
+
) -> None:
|
628 |
+
with self._temporary_wd(dir) as checkpoint_dir:
|
629 |
+
if isinstance(dist_model, FSDP):
|
630 |
+
with FSDP.state_dict_type(
|
631 |
+
dist_model,
|
632 |
+
state_dict_type=StateDictType.FULL_STATE_DICT,
|
633 |
+
state_dict_config=FullStateDictConfig(rank0_only=True, offload_to_cpu=True),
|
634 |
+
optim_state_dict_config=FullOptimStateDictConfig(rank0_only=True, offload_to_cpu=True),
|
635 |
+
):
|
636 |
+
# We'll write the model and optimizer state dicts individually to reduce (CPU) memory consumption.
|
637 |
+
# First the model state.
|
638 |
+
model_state_dict = dist_model.state_dict()
|
639 |
+
self._write_model_dict(
|
640 |
+
model_state_dict, checkpoint_dir, upload_to, save_overwrite=self.cfg.save_overwrite
|
641 |
+
)
|
642 |
+
|
643 |
+
# Then the optimizer state.
|
644 |
+
optim_state_dict = FSDP.optim_state_dict(dist_model, optim)
|
645 |
+
self._write_optim_dict(
|
646 |
+
optim_state_dict, checkpoint_dir, upload_to, save_overwrite=self.cfg.save_overwrite
|
647 |
+
)
|
648 |
+
elif isinstance(dist_model, DDP):
|
649 |
+
# _write_model_dict and _write_optim_dict only write checkpoints for rank 0
|
650 |
+
# First, get the model state dict from DDP wrapped model
|
651 |
+
model_state_dict = dist_model.module.state_dict()
|
652 |
+
self._write_model_dict(
|
653 |
+
model_state_dict, checkpoint_dir, upload_to, save_overwrite=self.cfg.save_overwrite
|
654 |
+
)
|
655 |
+
|
656 |
+
# Then get the optimizer state dict
|
657 |
+
optim_state_dict = optim.state_dict()
|
658 |
+
self._write_optim_dict(
|
659 |
+
optim_state_dict, checkpoint_dir, upload_to, save_overwrite=self.cfg.save_overwrite
|
660 |
+
)
|
661 |
+
else:
|
662 |
+
log.info(
|
663 |
+
"`FullCheckpointer.save_checkpoint` only supported for FSDP and DDP distributed strategies!"
|
664 |
+
)
|
665 |
+
|
666 |
+
# Save trainer state.
|
667 |
+
if get_global_rank() == 0:
|
668 |
+
log.info("Saving trainer state...")
|
669 |
+
save_state_dict(
|
670 |
+
checkpoint_dir,
|
671 |
+
"train.pt",
|
672 |
+
trainer_state,
|
673 |
+
upload_to=upload_to,
|
674 |
+
save_overwrite=self.cfg.save_overwrite,
|
675 |
+
synchronize=False,
|
676 |
+
)
|
677 |
+
# Save config.
|
678 |
+
self._save_config(checkpoint_dir, upload_to=upload_to)
|
679 |
+
|
680 |
+
def restore_checkpoint(
|
681 |
+
self,
|
682 |
+
load_path: PathOrStr,
|
683 |
+
dist_model: nn.Module,
|
684 |
+
optim: Optimizer,
|
685 |
+
*,
|
686 |
+
local_cache: Optional[PathOrStr] = None,
|
687 |
+
load_optimizer_state: bool = True,
|
688 |
+
) -> Dict[str, Any]:
|
689 |
+
if isinstance(dist_model, FSDP):
|
690 |
+
with FSDP.state_dict_type(
|
691 |
+
dist_model,
|
692 |
+
state_dict_type=StateDictType.FULL_STATE_DICT,
|
693 |
+
state_dict_config=FullStateDictConfig(rank0_only=False, offload_to_cpu=True),
|
694 |
+
optim_state_dict_config=FullOptimStateDictConfig(rank0_only=False, offload_to_cpu=True),
|
695 |
+
):
|
696 |
+
with torch.no_grad():
|
697 |
+
# fill everything with NaN, so we can check afterwards that every parameter has been restored
|
698 |
+
for module_name, module in dist_model.named_modules():
|
699 |
+
if not isinstance(module, FSDP):
|
700 |
+
continue
|
701 |
+
for param in module.params:
|
702 |
+
param.fill_(torch.nan)
|
703 |
+
|
704 |
+
# restore params from checkpoint
|
705 |
+
state_dict_to_load = load_state_dict(
|
706 |
+
load_path, "model.pt", local_cache=local_cache, map_location="cpu"
|
707 |
+
)
|
708 |
+
(
|
709 |
+
state_dict_to_load,
|
710 |
+
og_keys_to_new,
|
711 |
+
) = dist_model._fsdp_wrapped_module._make_state_dict_compatible(state_dict_to_load)
|
712 |
+
|
713 |
+
for module_name, module in dist_model.named_modules():
|
714 |
+
if not isinstance(module, FSDP):
|
715 |
+
continue
|
716 |
+
for param in module.params:
|
717 |
+
assert param._is_flat_param
|
718 |
+
for fqn, spi in zip(param._fqns, param._shard_param_infos):
|
719 |
+
if not spi.in_shard:
|
720 |
+
continue
|
721 |
+
key = f"{module_name}.{fqn}"
|
722 |
+
key = key.replace("_fsdp_wrapped_module.", "")
|
723 |
+
key = key.lstrip(".")
|
724 |
+
t = state_dict_to_load[key]
|
725 |
+
t = t.flatten()
|
726 |
+
param[spi.offset_in_shard : spi.offset_in_shard + spi.numel_in_shard].copy_(
|
727 |
+
t[spi.intra_param_start_idx : spi.intra_param_end_idx + 1]
|
728 |
+
)
|
729 |
+
|
730 |
+
# make sure that every parameter has been restored
|
731 |
+
for module_name, module in dist_model.named_modules():
|
732 |
+
if not isinstance(module, FSDP):
|
733 |
+
continue
|
734 |
+
for param in module.params:
|
735 |
+
if torch.isnan(param).any():
|
736 |
+
raise ValueError(
|
737 |
+
f"Module '{module_name}' contains NaNs, this is likely a bug restoring from full checkpoints"
|
738 |
+
)
|
739 |
+
|
740 |
+
# Load optimizer state.
|
741 |
+
if load_optimizer_state:
|
742 |
+
optim_state_dict_to_load = load_state_dict(
|
743 |
+
load_path, "optim.pt", local_cache=local_cache, map_location="cpu"
|
744 |
+
)
|
745 |
+
optim_state_dict_to_load = self._make_optim_state_dict_compatible(
|
746 |
+
optim_state_dict_to_load,
|
747 |
+
og_keys_to_new,
|
748 |
+
)
|
749 |
+
gc.collect()
|
750 |
+
torch.cuda.empty_cache()
|
751 |
+
barrier()
|
752 |
+
for turn in range(get_local_world_size()):
|
753 |
+
log.info("Loading optimizer state turn %d ...", turn)
|
754 |
+
if turn == get_local_rank():
|
755 |
+
load_fsdp_optim_state(dist_model, optim, optim_state_dict_to_load)
|
756 |
+
gc.collect()
|
757 |
+
torch.cuda.empty_cache()
|
758 |
+
barrier()
|
759 |
+
del optim_state_dict_to_load
|
760 |
+
elif isinstance(dist_model, DDP):
|
761 |
+
# Load model state.
|
762 |
+
with torch.no_grad():
|
763 |
+
state_dict_to_load = load_state_dict(
|
764 |
+
load_path, "model.pt", local_cache=local_cache, map_location="cpu"
|
765 |
+
)
|
766 |
+
dist_model.module.load_state_dict(state_dict_to_load, strict=True)
|
767 |
+
|
768 |
+
# Load optimizer state.
|
769 |
+
if load_optimizer_state:
|
770 |
+
optim_state_dict_to_load = load_state_dict(
|
771 |
+
load_path, "optim.pt", local_cache=local_cache, map_location="cpu"
|
772 |
+
)
|
773 |
+
optim.load_state_dict(optim_state_dict_to_load)
|
774 |
+
|
775 |
+
gc.collect()
|
776 |
+
torch.cuda.empty_cache()
|
777 |
+
barrier()
|
778 |
+
else:
|
779 |
+
raise NotImplementedError(
|
780 |
+
"`FullCheckpointer.restore_checkpoint` only supported for FSDP and DDP distributed strategies!"
|
781 |
+
)
|
782 |
+
|
783 |
+
# Load other state.
|
784 |
+
try:
|
785 |
+
trainer_state = load_state_dict(load_path, "train.pt", local_cache=local_cache)
|
786 |
+
except FileNotFoundError:
|
787 |
+
# for backwards compatibility
|
788 |
+
trainer_state = load_state_dict(load_path, "other.pt", local_cache=local_cache)
|
789 |
+
barrier()
|
790 |
+
return trainer_state
|
791 |
+
|
792 |
+
def _write_model_dict(self, model_state_dict, checkpoint_dir, upload_to, save_overwrite):
|
793 |
+
if get_global_rank() == 0:
|
794 |
+
log.info("Saving model state...")
|
795 |
+
save_state_dict(
|
796 |
+
checkpoint_dir,
|
797 |
+
"model.pt",
|
798 |
+
model_state_dict,
|
799 |
+
upload_to=upload_to,
|
800 |
+
save_overwrite=save_overwrite,
|
801 |
+
synchronize=False,
|
802 |
+
)
|
803 |
+
|
804 |
+
del model_state_dict
|
805 |
+
barrier()
|
806 |
+
|
807 |
+
def _write_optim_dict(self, optim_state_dict, checkpoint_dir, upload_to, save_overwrite):
|
808 |
+
if get_global_rank() == 0:
|
809 |
+
log.info("Saving optim state...")
|
810 |
+
save_state_dict(
|
811 |
+
checkpoint_dir,
|
812 |
+
"optim.pt",
|
813 |
+
optim_state_dict,
|
814 |
+
upload_to=upload_to,
|
815 |
+
save_overwrite=save_overwrite,
|
816 |
+
synchronize=False,
|
817 |
+
)
|
818 |
+
|
819 |
+
del optim_state_dict
|
820 |
+
barrier()
|
821 |
+
|
822 |
+
def _make_optim_state_dict_compatible(
|
823 |
+
self, optim_state_dict: Dict[str, Any], og_keys_to_new: Dict[str, Set[str]]
|
824 |
+
) -> Dict[str, Any]:
|
825 |
+
# This state dict comes in two forms: one where the state keys are integers and one where the
|
826 |
+
# keys are fully qualified parameter names. The latter case is easier to deal with here so we
|
827 |
+
# first transform the integer key form into the FQN key form.
|
828 |
+
if isinstance(optim_state_dict["param_groups"][0]["params"][0], int):
|
829 |
+
id_to_fqn: Dict[int, str] = {}
|
830 |
+
for group in optim_state_dict["param_groups"]:
|
831 |
+
new_param_names = []
|
832 |
+
for fqn, id in zip(group["param_names"], group["params"]):
|
833 |
+
fqn = fqn.replace("_fsdp_wrapped_module.", "")
|
834 |
+
id_to_fqn[id] = fqn
|
835 |
+
new_param_names.append(fqn)
|
836 |
+
group["param_names"] = new_param_names
|
837 |
+
group["params"] = new_param_names
|
838 |
+
for id in list(optim_state_dict["state"].keys()):
|
839 |
+
optim_state_dict["state"][id_to_fqn[id]] = optim_state_dict["state"].pop(id)
|
840 |
+
else:
|
841 |
+
# Otherwise we still want to clean up the param names to remove the "_fsdp_wrapped_module." prefix.
|
842 |
+
for group in optim_state_dict["param_groups"]:
|
843 |
+
group["param_names"] = [fqn.replace("_fsdp_wrapped_module.", "") for fqn in group["param_names"]]
|
844 |
+
group["params"] = [fqn.replace("_fsdp_wrapped_module.", "") for fqn in group["params"]]
|
845 |
+
assert group["param_names"] == group["params"]
|
846 |
+
for key in list(optim_state_dict["state"].keys()):
|
847 |
+
optim_state_dict["state"][key.replace("_fsdp_wrapped_module.", "")] = optim_state_dict[
|
848 |
+
"state"
|
849 |
+
].pop(key)
|
850 |
+
|
851 |
+
# Now we can transform the state dict by renaming parameters according to `og_keys_to_new`.
|
852 |
+
# First fix param names in the state.
|
853 |
+
for og_key, new_keys in og_keys_to_new.items():
|
854 |
+
og_state = optim_state_dict["state"].pop(og_key, None)
|
855 |
+
if og_state is None:
|
856 |
+
continue
|
857 |
+
for i, new_key in enumerate(new_keys):
|
858 |
+
if i == len(new_keys) - 1:
|
859 |
+
optim_state_dict["state"][new_key] = og_state
|
860 |
+
else:
|
861 |
+
optim_state_dict["state"][new_key] = deepcopy(og_state)
|
862 |
+
# Now fix param names in the param groups.
|
863 |
+
for group in optim_state_dict["param_groups"]:
|
864 |
+
og_names = group["params"]
|
865 |
+
new_names = []
|
866 |
+
for og_key in og_names:
|
867 |
+
for new_key in og_keys_to_new[og_key]:
|
868 |
+
new_names.append(new_key)
|
869 |
+
group["params"] = new_names
|
870 |
+
group["param_names"] = new_names
|
871 |
+
|
872 |
+
return optim_state_dict
|
873 |
+
|
874 |
+
def load_checkpoint(
|
875 |
+
self,
|
876 |
+
load_path: PathOrStr,
|
877 |
+
*,
|
878 |
+
local_cache: Optional[PathOrStr] = None,
|
879 |
+
load_optimizer_state: bool = True,
|
880 |
+
device: Optional[torch.device] = None,
|
881 |
+
) -> Tuple[Dict[str, torch.Tensor], Optional[Dict[str, Any]]]:
|
882 |
+
device = device if device is not None else torch.device("cpu")
|
883 |
+
model_state = load_state_dict(load_path, "model.pt", local_cache=local_cache, map_location=device) # type: ignore
|
884 |
+
optim_state = None
|
885 |
+
if load_optimizer_state:
|
886 |
+
optim_state = load_state_dict(load_path, "optim.pt", local_cache=local_cache, map_location=device) # type: ignore
|
887 |
+
return model_state, optim_state
|
888 |
+
|
889 |
+
|
890 |
+
class TorchNewStyleShardedCheckpointer(Checkpointer):
|
891 |
+
"""
|
892 |
+
A sharded :class:`Checkpointer` that uses PyTorch's new distributed checkpointing functionality.
|
893 |
+
"""
|
894 |
+
|
895 |
+
def save_checkpoint(
|
896 |
+
self,
|
897 |
+
dir: PathOrStr,
|
898 |
+
dist_model: nn.Module,
|
899 |
+
optim: Optimizer,
|
900 |
+
trainer_state: Dict[str, Any],
|
901 |
+
*,
|
902 |
+
upload_to: Optional[str] = None,
|
903 |
+
) -> None:
|
904 |
+
assert isinstance(
|
905 |
+
dist_model, FSDP
|
906 |
+
), f"{self.__class__.__name__} is being called to save a model where `distributed_strategy` is not FSDP."
|
907 |
+
with self._temporary_wd(dir) as checkpoint_dir:
|
908 |
+
# Save model and optim state.
|
909 |
+
save_fsdp_model_and_optim_state(
|
910 |
+
checkpoint_dir,
|
911 |
+
dist_model,
|
912 |
+
optim,
|
913 |
+
upload_to=upload_to,
|
914 |
+
save_overwrite=self.cfg.save_overwrite,
|
915 |
+
)
|
916 |
+
|
917 |
+
# Save trainer state.
|
918 |
+
log.info("Saving trainer state...")
|
919 |
+
save_state_dict(
|
920 |
+
checkpoint_dir,
|
921 |
+
f"train/rank{get_global_rank()}.pt",
|
922 |
+
trainer_state,
|
923 |
+
upload_to=upload_to,
|
924 |
+
save_overwrite=self.cfg.save_overwrite,
|
925 |
+
)
|
926 |
+
|
927 |
+
# Save config.
|
928 |
+
self._save_config(checkpoint_dir, upload_to=upload_to)
|
929 |
+
|
930 |
+
def restore_checkpoint(
|
931 |
+
self,
|
932 |
+
load_path: PathOrStr,
|
933 |
+
dist_model: nn.Module,
|
934 |
+
optim: Optimizer,
|
935 |
+
*,
|
936 |
+
local_cache: Optional[PathOrStr] = None,
|
937 |
+
load_optimizer_state: bool = True,
|
938 |
+
) -> Dict[str, Any]:
|
939 |
+
# Load model and optimizer state in place.
|
940 |
+
log.info("Loading model and optimizer state...")
|
941 |
+
assert isinstance(
|
942 |
+
dist_model, FSDP
|
943 |
+
), f"{self.__class__.__name__} is being called to load a model where `distributed_strategy` is not FSDP."
|
944 |
+
|
945 |
+
load_fsdp_model_and_optim_state(
|
946 |
+
load_path,
|
947 |
+
dist_model,
|
948 |
+
optim,
|
949 |
+
local_cache=local_cache,
|
950 |
+
load_optimizer_state=load_optimizer_state,
|
951 |
+
)
|
952 |
+
|
953 |
+
# Load trainer state dict.
|
954 |
+
log.info("Loading trainer state...")
|
955 |
+
try:
|
956 |
+
trainer_state = load_state_dict(
|
957 |
+
load_path, f"train/rank{get_global_rank()}.pt", local_cache=local_cache
|
958 |
+
)
|
959 |
+
except FileNotFoundError:
|
960 |
+
# Fall back to rank 0 train state.
|
961 |
+
# This can happen when we're restoring a checkpoint with a different world size.
|
962 |
+
trainer_state = load_state_dict(load_path, "train/rank0.pt", local_cache=local_cache)
|
963 |
+
barrier()
|
964 |
+
return trainer_state
|
965 |
+
|
966 |
+
|
967 |
+
class TorchLegacyShardedCheckpointer(Checkpointer):
|
968 |
+
"""
|
969 |
+
A sharded :class:`Checkpointer` that just uses `torch.save()` with extra logic for handling FSDP model
|
970 |
+
and optim state.
|
971 |
+
|
972 |
+
The world size must be kept consistent when using this checkpointer.
|
973 |
+
"""
|
974 |
+
|
975 |
+
def __init__(self, cfg: TrainConfig, thread_count: Optional[int] = None, use_shared_mem_impl: bool = False):
|
976 |
+
super().__init__(cfg, thread_count)
|
977 |
+
self.use_shared_mem_impl = use_shared_mem_impl
|
978 |
+
|
979 |
+
def save_checkpoint(
|
980 |
+
self,
|
981 |
+
dir: PathOrStr,
|
982 |
+
dist_model: nn.Module,
|
983 |
+
optim: Optimizer,
|
984 |
+
trainer_state: Dict[str, Any],
|
985 |
+
*,
|
986 |
+
upload_to: Optional[str] = None,
|
987 |
+
) -> None:
|
988 |
+
assert isinstance(
|
989 |
+
dist_model, FSDP
|
990 |
+
), f"{self.__class__.__name__} is being called to save a model where `distributed_strategy` is not FSDP."
|
991 |
+
with self._temporary_wd(dir) as checkpoint_dir:
|
992 |
+
with FSDP.state_dict_type(
|
993 |
+
dist_model,
|
994 |
+
state_dict_type=StateDictType.SHARDED_STATE_DICT,
|
995 |
+
state_dict_config=ShardedStateDictConfig(offload_to_cpu=True),
|
996 |
+
optim_state_dict_config=ShardedOptimStateDictConfig(offload_to_cpu=True),
|
997 |
+
):
|
998 |
+
state_dict = {
|
999 |
+
"model": dist_model.state_dict(),
|
1000 |
+
"optim": FSDP.optim_state_dict(dist_model, optim),
|
1001 |
+
**trainer_state,
|
1002 |
+
}
|
1003 |
+
save_state_dict(
|
1004 |
+
checkpoint_dir,
|
1005 |
+
f"rank{get_global_rank()}.pt",
|
1006 |
+
state_dict,
|
1007 |
+
upload_to=upload_to,
|
1008 |
+
save_overwrite=self.cfg.save_overwrite,
|
1009 |
+
)
|
1010 |
+
|
1011 |
+
# Save config.
|
1012 |
+
self._save_config(checkpoint_dir, upload_to=upload_to)
|
1013 |
+
|
1014 |
+
def restore_checkpoint(
|
1015 |
+
self,
|
1016 |
+
load_path: PathOrStr,
|
1017 |
+
dist_model: nn.Module,
|
1018 |
+
optim: Optimizer,
|
1019 |
+
*,
|
1020 |
+
local_cache: Optional[PathOrStr] = None,
|
1021 |
+
load_optimizer_state: bool = True,
|
1022 |
+
) -> Dict[str, Any]:
|
1023 |
+
assert isinstance(
|
1024 |
+
dist_model, FSDP
|
1025 |
+
), f"{self.__class__.__name__} is being called to load a model where `distributed_strategy` is not FSDP."
|
1026 |
+
with FSDP.state_dict_type(
|
1027 |
+
dist_model,
|
1028 |
+
state_dict_type=StateDictType.SHARDED_STATE_DICT,
|
1029 |
+
state_dict_config=ShardedStateDictConfig(offload_to_cpu=True),
|
1030 |
+
optim_state_dict_config=ShardedOptimStateDictConfig(offload_to_cpu=True),
|
1031 |
+
):
|
1032 |
+
# Deserialize state dict.
|
1033 |
+
state_dict = load_state_dict(
|
1034 |
+
load_path, f"rank{get_global_rank()}.pt", local_cache=local_cache, map_location="cpu"
|
1035 |
+
)
|
1036 |
+
|
1037 |
+
# Load model and optimizer state.
|
1038 |
+
log.info("Loading model state...")
|
1039 |
+
dist_model.load_state_dict(state_dict["model"])
|
1040 |
+
del state_dict["model"]
|
1041 |
+
if load_optimizer_state:
|
1042 |
+
log.info("Loading optimizer state...")
|
1043 |
+
load_fsdp_optim_state(dist_model, optim, state_dict["optim"])
|
1044 |
+
del state_dict["optim"]
|
1045 |
+
|
1046 |
+
barrier()
|
1047 |
+
return state_dict
|
1048 |
+
|
1049 |
+
def unshard_checkpoint(
|
1050 |
+
self,
|
1051 |
+
load_path: PathOrStr,
|
1052 |
+
*,
|
1053 |
+
local_cache: Optional[PathOrStr] = None,
|
1054 |
+
load_optimizer_state: bool = True,
|
1055 |
+
load_trainer_state: bool = True,
|
1056 |
+
device: Optional[torch.device] = None,
|
1057 |
+
) -> Tuple[Dict[str, torch.Tensor], Optional[Dict[str, Any]], Optional[Dict[str, Any]]]:
|
1058 |
+
assert local_cache is None, "this method currently only supports local files"
|
1059 |
+
full_state_dict = self._unshard(load_path, device or torch.device("cpu"), skip_keys={"rng"})
|
1060 |
+
model_state = full_state_dict.pop("model")
|
1061 |
+
optim_state = full_state_dict.pop("optim")
|
1062 |
+
return (
|
1063 |
+
model_state,
|
1064 |
+
optim_state if load_optimizer_state else None,
|
1065 |
+
full_state_dict if load_trainer_state else None,
|
1066 |
+
)
|
1067 |
+
|
1068 |
+
def _copy_sharded_tensors_to_shared_mem(self, state: Dict, world_size: int, rank: int, key: Tuple):
|
1069 |
+
key = tuple() if key is None else key
|
1070 |
+
if isinstance(state, (list, tuple, set)):
|
1071 |
+
for i, sub_state in enumerate(state):
|
1072 |
+
self._copy_sharded_tensors_to_shared_mem(sub_state, world_size, rank, key + (i,))
|
1073 |
+
elif isinstance(state, dict):
|
1074 |
+
for name in state.keys():
|
1075 |
+
self._copy_sharded_tensors_to_shared_mem(state[name], world_size, rank, key + (name,))
|
1076 |
+
elif isinstance(state, ShardedTensor):
|
1077 |
+
self._copy_sharded_tensor_to_shared_mem(state, world_size, rank, key)
|
1078 |
+
return
|
1079 |
+
else:
|
1080 |
+
return
|
1081 |
+
|
1082 |
+
def _get_shard_placement_and_rank_sizes(
|
1083 |
+
self, shards_metadata: List[ShardMetadata], world_size: int
|
1084 |
+
) -> Tuple[Dict[ShardMetadata, Tuple[int, int]], List[int]]:
|
1085 |
+
def shard_size(shard_md):
|
1086 |
+
return reduce((lambda x, y: x * y), shard_md.shard_sizes) # type: ignore[attr-defined]
|
1087 |
+
|
1088 |
+
rank_sizes = [0 for _ in range(world_size)]
|
1089 |
+
shard_placement: Dict[ShardMetadata, Tuple[int, int]] = {}
|
1090 |
+
for shard_md in shards_metadata:
|
1091 |
+
shard_rank = cast(_remote_device, shard_md.placement).rank()
|
1092 |
+
assert shard_rank is not None
|
1093 |
+
if shard_rank >= world_size:
|
1094 |
+
raise RuntimeError(f"Shard rank {shard_rank} exceeds world size {world_size}")
|
1095 |
+
|
1096 |
+
shard_placement[shard_md] = (shard_rank, rank_sizes[shard_rank])
|
1097 |
+
rank_sizes[shard_rank] += shard_size(shard_md)
|
1098 |
+
|
1099 |
+
return shard_placement, rank_sizes
|
1100 |
+
|
1101 |
+
def _copy_sharded_tensor_to_shared_mem(
|
1102 |
+
self, sharded_tensor: ShardedTensor, world_size: int, rank: int, key: Tuple
|
1103 |
+
) -> Any:
|
1104 |
+
shard0_md = sharded_tensor.metadata()
|
1105 |
+
shard_placement, rank_sizes = self._get_shard_placement_and_rank_sizes(
|
1106 |
+
shard0_md.shards_metadata, world_size
|
1107 |
+
)
|
1108 |
+
|
1109 |
+
rank_size = rank_sizes[rank]
|
1110 |
+
assert rank_size >= 0
|
1111 |
+
if rank_size == 0:
|
1112 |
+
return
|
1113 |
+
|
1114 |
+
assert shard0_md.tensor_properties.dtype == torch.float32, "Expected sharded tensor to be fp32"
|
1115 |
+
numpy_type = np.float32
|
1116 |
+
|
1117 |
+
sharded_memory_name = "-".join(key + (str(rank),))
|
1118 |
+
|
1119 |
+
shm = shared_memory.SharedMemory(
|
1120 |
+
create=True, size=rank_size * np.dtype(numpy_type).itemsize, name=sharded_memory_name
|
1121 |
+
)
|
1122 |
+
np_arr = np.ndarray((rank_size,), dtype=numpy_type, buffer=shm.buf)
|
1123 |
+
|
1124 |
+
for local_shard in sharded_tensor.local_shards():
|
1125 |
+
shard_rank = cast(_remote_device, local_shard.metadata.placement).rank()
|
1126 |
+
assert shard_rank == rank
|
1127 |
+
|
1128 |
+
src = local_shard.tensor.flatten()
|
1129 |
+
shard_offset = shard_placement[local_shard.metadata][1]
|
1130 |
+
|
1131 |
+
np_arr[shard_offset : shard_offset + src.numel()] = src.numpy()
|
1132 |
+
|
1133 |
+
shm.close()
|
1134 |
+
|
1135 |
+
def _copy_sharded_data_to_shared_mem(self, world_size: int, shard_filepath: Path):
|
1136 |
+
shard_number = int(shard_filepath.name[4:-3])
|
1137 |
+
log.info("Starting unsharding shard number %d to shared memory", shard_number)
|
1138 |
+
|
1139 |
+
with self._patch_sharded_tensor_load():
|
1140 |
+
shard = torch.load(shard_filepath, map_location="cpu")
|
1141 |
+
log.debug("Done loading shard number %d", shard_number)
|
1142 |
+
|
1143 |
+
self._copy_sharded_tensors_to_shared_mem(
|
1144 |
+
shard, world_size, shard_number, (str(shard_filepath.parent).replace("/", "_"),)
|
1145 |
+
)
|
1146 |
+
log.info("Done unsharding shard number %d to shared memory", shard_number)
|
1147 |
+
|
1148 |
+
def _unshard_using_sharded_mem(
|
1149 |
+
self, state: Any, world_size: int, device: torch.device, shard_dir: PathOrStr
|
1150 |
+
) -> Any:
|
1151 |
+
return self._unshard_state_using_shared_mem(state, world_size, device, (str(shard_dir).replace("/", "_"),))
|
1152 |
+
|
1153 |
+
def _unshard_state_using_shared_mem(
|
1154 |
+
self, state: Any, world_size: int, device: torch.device, key: Tuple
|
1155 |
+
) -> Any:
|
1156 |
+
if isinstance(state, (list, tuple, set)):
|
1157 |
+
return state.__class__(
|
1158 |
+
self._unshard_state_using_shared_mem(sub_state, world_size, device, key + (i,))
|
1159 |
+
for i, sub_state in enumerate(state)
|
1160 |
+
)
|
1161 |
+
elif isinstance(state, dict):
|
1162 |
+
return {
|
1163 |
+
name: self._unshard_state_using_shared_mem(state[name], world_size, device, key + (name,))
|
1164 |
+
for name in state.keys()
|
1165 |
+
}
|
1166 |
+
elif isinstance(state, ShardedTensor):
|
1167 |
+
return self._unshard_tensor_using_shared_mem(state, world_size, device, key)
|
1168 |
+
elif isinstance(state, torch.Tensor):
|
1169 |
+
return state.to(device=device)
|
1170 |
+
else:
|
1171 |
+
return state
|
1172 |
+
|
1173 |
+
def _unshard_tensor_using_shared_mem(
|
1174 |
+
self, sharded_tensor: ShardedTensor, world_size: int, device: torch.device, key: Tuple
|
1175 |
+
) -> torch.Tensor:
|
1176 |
+
shard0_md = sharded_tensor.metadata()
|
1177 |
+
|
1178 |
+
def shard_size(shard_md):
|
1179 |
+
return reduce((lambda x, y: x * y), shard_md.shard_sizes) # type: ignore[attr-defined]
|
1180 |
+
|
1181 |
+
shard_placement, rank_sizes = self._get_shard_placement_and_rank_sizes(
|
1182 |
+
shard0_md.shards_metadata, world_size
|
1183 |
+
)
|
1184 |
+
|
1185 |
+
assert shard0_md.tensor_properties.dtype == torch.float32, "Expected sharded tensor to be fp32"
|
1186 |
+
numpy_type = np.float32
|
1187 |
+
|
1188 |
+
out = torch.empty(
|
1189 |
+
*sharded_tensor.metadata().size, dtype=sharded_tensor.metadata().tensor_properties.dtype, device=device
|
1190 |
+
)
|
1191 |
+
dims = len(sharded_tensor.metadata().size)
|
1192 |
+
for shard_md, (rank, rank_offset) in shard_placement.items():
|
1193 |
+
if rank >= world_size:
|
1194 |
+
raise RuntimeError(f"Shard rank {rank} exceeds world size {world_size}")
|
1195 |
+
|
1196 |
+
sharded_memory_name = "-".join(key + (str(rank),))
|
1197 |
+
shm = shared_memory.SharedMemory(name=sharded_memory_name)
|
1198 |
+
|
1199 |
+
rank_size = rank_sizes[rank]
|
1200 |
+
assert rank_size >= 0
|
1201 |
+
if rank_size == 0:
|
1202 |
+
continue
|
1203 |
+
|
1204 |
+
np_arr = np.ndarray((rank_size,), dtype=numpy_type, buffer=shm.buf)
|
1205 |
+
|
1206 |
+
tensor = torch.from_numpy(np_arr)[rank_offset : rank_offset + shard_size(shard_md)]
|
1207 |
+
tensor = tensor.view(shard_md.shard_sizes)
|
1208 |
+
|
1209 |
+
out_narrow_view = out
|
1210 |
+
for dim in range(dims):
|
1211 |
+
out_narrow_view = out_narrow_view.narrow(
|
1212 |
+
dim,
|
1213 |
+
shard_md.shard_offsets[dim],
|
1214 |
+
shard_md.shard_sizes[dim],
|
1215 |
+
)
|
1216 |
+
|
1217 |
+
out_narrow_view.copy_(tensor)
|
1218 |
+
|
1219 |
+
shm.close()
|
1220 |
+
shm.unlink()
|
1221 |
+
|
1222 |
+
return out
|
1223 |
+
|
1224 |
+
@contextmanager
|
1225 |
+
def _patch_sharded_tensor_load(self):
|
1226 |
+
"""
|
1227 |
+
Monkeypatch for torch's ShardedTensor, so we can unpickle without having torch.distributed set up.
|
1228 |
+
"""
|
1229 |
+
|
1230 |
+
def _rebuild_from_type_v2_monkey(func, new_type, args, state):
|
1231 |
+
ret = func(*args)
|
1232 |
+
if type(ret) is not new_type:
|
1233 |
+
ret = ret.as_subclass(new_type)
|
1234 |
+
|
1235 |
+
# Shortcut the construction of ShardedTensor
|
1236 |
+
# This is in the top 5 of my worst hacks.
|
1237 |
+
if isinstance(ret, ShardedTensor):
|
1238 |
+
ret._local_shards, ret._metadata, _, ret._sharding_spec, ret._init_rrefs = state
|
1239 |
+
return ret
|
1240 |
+
|
1241 |
+
# The rest of this function ought to be in the top 5 of somebody else's worst hacks.
|
1242 |
+
# Tensor does define __setstate__ even though it doesn't define
|
1243 |
+
# __getstate__. So only use __setstate__ if it is NOT the one defined
|
1244 |
+
# on Tensor
|
1245 |
+
if getattr(ret.__class__, "__setstate__", torch.Tensor.__setstate__) is not torch.Tensor.__setstate__:
|
1246 |
+
ret.__setstate__(state)
|
1247 |
+
else:
|
1248 |
+
ret = torch._utils._set_obj_state(ret, state)
|
1249 |
+
return ret
|
1250 |
+
|
1251 |
+
original_rebuild_from_type_v2 = torch._tensor._rebuild_from_type_v2
|
1252 |
+
try:
|
1253 |
+
torch._tensor._rebuild_from_type_v2 = _rebuild_from_type_v2_monkey
|
1254 |
+
yield
|
1255 |
+
finally:
|
1256 |
+
torch._tensor._rebuild_from_type_v2 = original_rebuild_from_type_v2
|
1257 |
+
|
1258 |
+
def _unshard_using_shared_memory(
|
1259 |
+
self, input_dir: PathOrStr, device: torch.device, skip_keys: Optional[Set[str]] = None
|
1260 |
+
):
|
1261 |
+
"""
|
1262 |
+
This unsharding implementation consists of:
|
1263 |
+
|
1264 |
+
1. Loading each shard on a separate process and copying their sharded tensors to shared memory.
|
1265 |
+
2. Loading 1 shard on the main process as a base unsharded object.
|
1266 |
+
3. Using the sharded tensors in shared memory to populate the base unsharded object.
|
1267 |
+
|
1268 |
+
This implementation is an alternative to a prior implementation that instead loaded
|
1269 |
+
all shards using threads, because that implementation turned out to
|
1270 |
+
be extremely slow (e.g. 6+ hours) sometimes when the world size was 1024.
|
1271 |
+
The current implementation is slower than the old one in many scenarios,
|
1272 |
+
but is significantly faster in the above mentioned case (e.g. 30 minutes)
|
1273 |
+
if there are enough CPUs.
|
1274 |
+
|
1275 |
+
We keep the other implementation since this once can be more unreliable,
|
1276 |
+
likely due to its dependence on a large amount of shared memory.
|
1277 |
+
"""
|
1278 |
+
|
1279 |
+
input_dir = Path(input_dir)
|
1280 |
+
skip_keys = skip_keys or set()
|
1281 |
+
|
1282 |
+
shard_filepaths = list(input_dir.glob("rank*.pt"))
|
1283 |
+
world_size = len(shard_filepaths)
|
1284 |
+
if world_size == 0:
|
1285 |
+
raise RuntimeError("No shards found for unsharding")
|
1286 |
+
|
1287 |
+
log.info("Number of shards: %d", world_size)
|
1288 |
+
shard_size_gb = shard_filepaths[0].stat().st_size / (1024 * 1024 * 1024)
|
1289 |
+
min_ram_required_estimate_gb = shard_size_gb * world_size
|
1290 |
+
log.info(
|
1291 |
+
"Shards are %.2fGB each, at least %.2fGB RAM is required", shard_size_gb, min_ram_required_estimate_gb
|
1292 |
+
)
|
1293 |
+
|
1294 |
+
log.info("Copying sharded tensors to shared memory using multiple processes")
|
1295 |
+
# Copy sharded data to shared memory using multiple processes, so this process can load
|
1296 |
+
# from memory rather than disk. We spawn a new process instead of forking since shared memory
|
1297 |
+
# appears to get deleted when forked processes end for some reason.
|
1298 |
+
executor = ProcessPoolExecutor(
|
1299 |
+
mp_context=mp.get_context("spawn"), initializer=util.prepare_cli_environment
|
1300 |
+
)
|
1301 |
+
futures = []
|
1302 |
+
for shard_filepath in shard_filepaths:
|
1303 |
+
shard_rank = int(shard_filepath.name[4:-3])
|
1304 |
+
|
1305 |
+
if shard_rank >= world_size:
|
1306 |
+
raise RuntimeError(
|
1307 |
+
f"Shard rank {shard_rank} of file {shard_filepath} exceeds world size {world_size}"
|
1308 |
+
)
|
1309 |
+
|
1310 |
+
futures.append(executor.submit(self._copy_sharded_data_to_shared_mem, world_size, shard_filepath))
|
1311 |
+
|
1312 |
+
for f in as_completed(futures):
|
1313 |
+
f.result()
|
1314 |
+
executor.shutdown()
|
1315 |
+
|
1316 |
+
log.info("Loading a shard on the main process to be unsharded state")
|
1317 |
+
with self._patch_sharded_tensor_load():
|
1318 |
+
state = torch.load(shard_filepaths[0], map_location="cpu")
|
1319 |
+
|
1320 |
+
for key in skip_keys:
|
1321 |
+
if key in state:
|
1322 |
+
del state[key]
|
1323 |
+
|
1324 |
+
log.info("Unsharding from %d shards ...", world_size)
|
1325 |
+
return self._unshard_using_sharded_mem(state, world_size, device, input_dir)
|
1326 |
+
|
1327 |
+
def _unshard(self, input_dir: PathOrStr, device: torch.device, skip_keys: Optional[Set[str]] = None):
|
1328 |
+
if self.use_shared_mem_impl:
|
1329 |
+
return self._unshard_using_shared_memory(input_dir, device, skip_keys)
|
1330 |
+
|
1331 |
+
input_dir = Path(input_dir)
|
1332 |
+
skip_keys = skip_keys or set()
|
1333 |
+
|
1334 |
+
with self._patch_sharded_tensor_load():
|
1335 |
+
# We load in threads because it's faster.
|
1336 |
+
executor = ThreadPoolExecutor()
|
1337 |
+
shards_dict = {}
|
1338 |
+
for shard_name in input_dir.glob("rank*.pt"):
|
1339 |
+
log.info("Loading %s ...", shard_name)
|
1340 |
+
shard_number = int(shard_name.name[4:-3]) # shard names look like "rankXX.pt"
|
1341 |
+
shards_dict[shard_number] = executor.submit(torch.load, shard_name, map_location="cpu")
|
1342 |
+
shards = [None] * len(shards_dict)
|
1343 |
+
for rank, shard_future in shards_dict.items():
|
1344 |
+
shard = shard_future.result()
|
1345 |
+
for key in skip_keys:
|
1346 |
+
if key in shard:
|
1347 |
+
del shard[key]
|
1348 |
+
shards[rank] = shard
|
1349 |
+
assert all(shard is not None for shard in shards)
|
1350 |
+
executor.shutdown()
|
1351 |
+
del shards_dict
|
1352 |
+
|
1353 |
+
log.info("Unsharding from %d shards ...", len(shards))
|
1354 |
+
|
1355 |
+
unsharded_state_dict = self._unshard_object(shards, device=device)
|
1356 |
+
# At this point in time we need 2x memory :-(
|
1357 |
+
del shards
|
1358 |
+
|
1359 |
+
return unsharded_state_dict
|
1360 |
+
|
1361 |
+
def _unshard_object(self, os: List[Any], device: torch.device) -> Any:
|
1362 |
+
rank0_item = os[0]
|
1363 |
+
assert all(type(o) is type(rank0_item) for o in os)
|
1364 |
+
if isinstance(rank0_item, str):
|
1365 |
+
assert all(o == rank0_item for o in os)
|
1366 |
+
return rank0_item
|
1367 |
+
elif isinstance(rank0_item, (list, tuple, set)):
|
1368 |
+
assert all(len(o) == len(rank0_item) for o in os)
|
1369 |
+
return rank0_item.__class__(self._unshard_object(o, device=device) for o in zip(*os))
|
1370 |
+
elif isinstance(rank0_item, dict):
|
1371 |
+
assert all(o.keys() == rank0_item.keys() for o in os)
|
1372 |
+
return {key: self._unshard_object([o[key] for o in os], device=device) for key in rank0_item.keys()}
|
1373 |
+
elif isinstance(rank0_item, ShardedTensor):
|
1374 |
+
return self._gather(os, device=device)
|
1375 |
+
else:
|
1376 |
+
assert all(self._objects_are_equal(o, rank0_item) for o in os)
|
1377 |
+
return rank0_item
|
1378 |
+
|
1379 |
+
def _gather(self, shards: List[ShardedTensor], device: torch.device) -> torch.Tensor:
|
1380 |
+
world_size = len(shards)
|
1381 |
+
shard0_md = shards[0].metadata()
|
1382 |
+
# Make sure all shards agree on the metadata
|
1383 |
+
assert all(shard.metadata() == shard0_md for shard in shards)
|
1384 |
+
# Make sure the nth shard expects to be the nth shard.
|
1385 |
+
assert all(
|
1386 |
+
shard_md.placement.rank() == rank # type: ignore
|
1387 |
+
for rank, shard_md in enumerate(shard0_md.shards_metadata)
|
1388 |
+
)
|
1389 |
+
|
1390 |
+
def shard_size(shard_md):
|
1391 |
+
return reduce((lambda x, y: x * y), shard_md.shard_sizes) # type: ignore[attr-defined]
|
1392 |
+
|
1393 |
+
rank_sizes = [0 for _ in range(world_size)]
|
1394 |
+
max_rank_size = 0
|
1395 |
+
shard_placement: Dict[ShardMetadata, Tuple[int, int]] = {}
|
1396 |
+
for shard_md in shard0_md.shards_metadata:
|
1397 |
+
shard_rank = cast(_remote_device, shard_md.placement).rank()
|
1398 |
+
assert shard_rank is not None
|
1399 |
+
|
1400 |
+
shard_placement[shard_md] = (shard_rank, rank_sizes[shard_rank])
|
1401 |
+
rank_sizes[shard_rank] += shard_size(shard_md)
|
1402 |
+
max_rank_size = max(max_rank_size, rank_sizes[shard_rank])
|
1403 |
+
|
1404 |
+
gather_list: List[torch.Tensor] = [torch.empty((max_rank_size,)) for _ in range(world_size)]
|
1405 |
+
|
1406 |
+
datas = []
|
1407 |
+
with torch.no_grad():
|
1408 |
+
for shard in shards:
|
1409 |
+
data = torch.empty(max_rank_size)
|
1410 |
+
|
1411 |
+
for local_shard in shard.local_shards():
|
1412 |
+
src = local_shard.tensor.flatten()
|
1413 |
+
shard_offset = shard_placement[local_shard.metadata][1]
|
1414 |
+
data[shard_offset : shard_offset + src.numel()].copy_(src)
|
1415 |
+
|
1416 |
+
datas.append(data)
|
1417 |
+
|
1418 |
+
# torch.gather in a nutshell
|
1419 |
+
for rank, data in enumerate(datas):
|
1420 |
+
gather_list[rank].copy_(data)
|
1421 |
+
|
1422 |
+
full_size = shard0_md.size
|
1423 |
+
out = torch.empty(*full_size, dtype=shard0_md.tensor_properties.dtype, device=device)
|
1424 |
+
dims = len(full_size)
|
1425 |
+
for shard_md in shard0_md.shards_metadata:
|
1426 |
+
rank, rank_offset = shard_placement[shard_md]
|
1427 |
+
tensor = gather_list[rank]
|
1428 |
+
tensor = tensor[rank_offset : rank_offset + shard_size(shard_md)]
|
1429 |
+
tensor = tensor.view(shard_md.shard_sizes)
|
1430 |
+
|
1431 |
+
out_narrow_view = out
|
1432 |
+
for dim in range(dims):
|
1433 |
+
out_narrow_view = out_narrow_view.narrow(
|
1434 |
+
dim,
|
1435 |
+
shard_md.shard_offsets[dim],
|
1436 |
+
shard_md.shard_sizes[dim],
|
1437 |
+
)
|
1438 |
+
|
1439 |
+
out_narrow_view.copy_(tensor)
|
1440 |
+
|
1441 |
+
return out
|
1442 |
+
|
1443 |
+
def _objects_are_equal(self, a: Any, b: Any) -> bool:
|
1444 |
+
if type(a) is not type(b):
|
1445 |
+
return False
|
1446 |
+
if isinstance(a, np.ndarray):
|
1447 |
+
return np.array_equal(a, b)
|
1448 |
+
elif isinstance(a, torch.Tensor):
|
1449 |
+
return torch.equal(a, b)
|
1450 |
+
else:
|
1451 |
+
return a == b
|
1452 |
+
|
1453 |
+
|
1454 |
+
@dataclass
|
1455 |
+
class _LocalShardedCheckpointerMetadata(BaseConfig):
|
1456 |
+
world_size: int = field(default_factory=get_world_size)
|
1457 |
+
|
1458 |
+
|
1459 |
+
@dataclass
|
1460 |
+
class _FlatParamShard:
|
1461 |
+
full_shape: torch.Size
|
1462 |
+
shard_offsets: Tuple[int, int]
|
1463 |
+
shard_data: Optional[torch.Tensor]
|
1464 |
+
|
1465 |
+
def copy_into(self, full_tensor: torch.Tensor) -> None:
|
1466 |
+
assert self.shard_data is not None
|
1467 |
+
full_tensor_shard_view = full_tensor.view(-1)[self.shard_offsets[0] : self.shard_offsets[1] + 1]
|
1468 |
+
assert self.shard_data.shape == full_tensor_shard_view.shape
|
1469 |
+
full_tensor_shard_view.copy_(self.shard_data)
|
1470 |
+
|
1471 |
+
|
1472 |
+
class LocalShardedCheckpointer(Checkpointer):
|
1473 |
+
"""
|
1474 |
+
A sharded :class:`Checkpointer` that directly saves the local FSDP flat params data.
|
1475 |
+
The optimizer state is saved directly with `torch.save()` without reformatting via FSDP methods.
|
1476 |
+
|
1477 |
+
The world size must be kept consistent when using this checkpointer. However, you can easily
|
1478 |
+
reconstruct a full unsharded model and/or optimizer state dictionary from a single Python process
|
1479 |
+
using :meth:`unshard_checkpoint()` (no distributed initialization required).
|
1480 |
+
"""
|
1481 |
+
|
1482 |
+
# These correspond to metadata attributes on `torch.distributed.fsdp.flat_param.FlatParameter`.
|
1483 |
+
_FLAT_PARAM_METADATA_TO_SAVE = (
|
1484 |
+
"_fqns",
|
1485 |
+
"_shard_param_offsets",
|
1486 |
+
"_shard_indices",
|
1487 |
+
"_numels",
|
1488 |
+
"_numels_with_padding",
|
1489 |
+
"_shapes",
|
1490 |
+
"_shard_numel_padded",
|
1491 |
+
"_shard_param_infos",
|
1492 |
+
)
|
1493 |
+
|
1494 |
+
def _fsdp_modules(self, fsdp_model: FSDP) -> List[Tuple[str, FSDP]]:
|
1495 |
+
"""
|
1496 |
+
Returns a list of FSDP modules with their FQN.
|
1497 |
+
"""
|
1498 |
+
modules = []
|
1499 |
+
for name, module in fsdp_model.named_modules():
|
1500 |
+
if isinstance(module, FSDP):
|
1501 |
+
modules.append((name, module))
|
1502 |
+
return modules
|
1503 |
+
|
1504 |
+
def _prepare_fsdp_model(self, fsdp_model: FSDP) -> None:
|
1505 |
+
from torch.distributed.fsdp._runtime_utils import _lazy_init
|
1506 |
+
|
1507 |
+
# TODO (epwalsh): I'm not sure if this is necessary, but this is what PyTorch does before saving/loading
|
1508 |
+
# an FSDP state dict through the built-in methods.
|
1509 |
+
if torch.cuda.is_available():
|
1510 |
+
torch.cuda.synchronize()
|
1511 |
+
_lazy_init(fsdp_model, fsdp_model)
|
1512 |
+
|
1513 |
+
def _fsdp_handles(self, fsdp_model: FSDP) -> List[FlatParamHandle]:
|
1514 |
+
if version.parse(torch.__version__) < version.parse("2.1.0"):
|
1515 |
+
return fsdp_model._handles # type: ignore
|
1516 |
+
elif version.parse(torch.__version__) < version.parse("2.3.0"):
|
1517 |
+
# Handle could be None if the FSDP wrapper doesn't manage any parameters.
|
1518 |
+
if hasattr(fsdp_model, "_handle") and fsdp_model._handle is not None:
|
1519 |
+
return [fsdp_model._handle] # type: ignore
|
1520 |
+
else:
|
1521 |
+
return []
|
1522 |
+
else:
|
1523 |
+
# Need to verify FSDP internals with newer versions.
|
1524 |
+
raise NotImplementedError
|
1525 |
+
|
1526 |
+
@torch.no_grad()
|
1527 |
+
def _get_flat_param_state_to_save(self, fsdp_model: FSDP) -> Dict[str, Any]:
|
1528 |
+
self._prepare_fsdp_model(fsdp_model)
|
1529 |
+
module_data = []
|
1530 |
+
for module_fqn, fsdp_module in self._fsdp_modules(fsdp_model):
|
1531 |
+
handle_data = []
|
1532 |
+
for handle in self._fsdp_handles(fsdp_module):
|
1533 |
+
data: Dict[str, Any] = {}
|
1534 |
+
# This is a `FlatParameter` instance.
|
1535 |
+
# See `torch.distributed.fsdp.flat_param` for the API.
|
1536 |
+
flat_param = handle.flat_param
|
1537 |
+
data["flat_param.data"] = flat_param.detach()
|
1538 |
+
for key in self._FLAT_PARAM_METADATA_TO_SAVE:
|
1539 |
+
if hasattr(flat_param, key):
|
1540 |
+
data[f"flat_param.{key}"] = getattr(flat_param, key)
|
1541 |
+
handle_data.append(data)
|
1542 |
+
module_data.append({"handles": handle_data, "name": module_fqn})
|
1543 |
+
return {"modules": module_data}
|
1544 |
+
|
1545 |
+
@torch.no_grad()
|
1546 |
+
def _load_flat_param_state(self, fsdp_model: FSDP, model_state: Dict[str, Any]):
|
1547 |
+
"""Load the state produced from `self._get_flat_param_state_to_save()`."""
|
1548 |
+
self._prepare_fsdp_model(fsdp_model)
|
1549 |
+
fsdp_modules = self._fsdp_modules(fsdp_model)
|
1550 |
+
assert len(model_state["modules"]) == len(fsdp_modules)
|
1551 |
+
for (_, fsdp_module), module_data in zip(fsdp_modules, model_state["modules"]):
|
1552 |
+
handles = self._fsdp_handles(fsdp_module)
|
1553 |
+
assert len(handles) == len(module_data["handles"])
|
1554 |
+
for handle, data in zip(handles, module_data["handles"]):
|
1555 |
+
flat_param = handle.flat_param
|
1556 |
+
# Make sure metadata matches.
|
1557 |
+
for key in self._FLAT_PARAM_METADATA_TO_SAVE:
|
1558 |
+
if hasattr(flat_param, key):
|
1559 |
+
assert getattr(flat_param, key) == data[f"flat_param.{key}"]
|
1560 |
+
# Load the flat sharded data.
|
1561 |
+
flat_param.copy_(data["flat_param.data"])
|
1562 |
+
|
1563 |
+
def _save_metadata(self, dir: PathOrStr, *, upload_to: Optional[str] = None) -> None:
|
1564 |
+
if get_fs_local_rank() == 0:
|
1565 |
+
log.info("Saving metadata...")
|
1566 |
+
metadata = _LocalShardedCheckpointerMetadata()
|
1567 |
+
metadata.save(metadata_path := Path(dir) / "metadata.yaml")
|
1568 |
+
if upload_to is not None and get_global_rank() == 0:
|
1569 |
+
upload_target = f"{upload_to}/metadata.yaml"
|
1570 |
+
log.info(f"Uploading {metadata_path} to {upload_target}")
|
1571 |
+
upload(metadata_path, upload_target, save_overwrite=self.cfg.save_overwrite)
|
1572 |
+
|
1573 |
+
def _load_metadata(
|
1574 |
+
self, load_path: PathOrStr, *, local_cache: Optional[PathOrStr] = None
|
1575 |
+
) -> _LocalShardedCheckpointerMetadata:
|
1576 |
+
metadata_path = resource_path(load_path, "metadata.yaml", local_cache=local_cache)
|
1577 |
+
return _LocalShardedCheckpointerMetadata.load(metadata_path)
|
1578 |
+
|
1579 |
+
def save_checkpoint(
|
1580 |
+
self,
|
1581 |
+
dir: PathOrStr,
|
1582 |
+
dist_model: nn.Module,
|
1583 |
+
optim: Optimizer,
|
1584 |
+
trainer_state: Dict[str, Any],
|
1585 |
+
*,
|
1586 |
+
upload_to: Optional[str] = None,
|
1587 |
+
) -> None:
|
1588 |
+
assert isinstance(
|
1589 |
+
dist_model, FSDP
|
1590 |
+
), f"{self.__class__.__name__} is being called to save a model where `distributed_strategy` is not FSDP."
|
1591 |
+
|
1592 |
+
with self._temporary_wd(dir) as checkpoint_dir:
|
1593 |
+
# Gather local FSDP flat params data to save.
|
1594 |
+
# We also save some flat param metadata like the corresponding fully qualified names (fqns)
|
1595 |
+
# of each original parameter so we can validate that the sharding is the same when loading
|
1596 |
+
# one of these checkpoints.
|
1597 |
+
log.info("Saving local FSDP flat params data...")
|
1598 |
+
save_state_dict(
|
1599 |
+
checkpoint_dir,
|
1600 |
+
f"model/rank{get_global_rank()}.pt",
|
1601 |
+
self._get_flat_param_state_to_save(dist_model),
|
1602 |
+
upload_to=upload_to,
|
1603 |
+
save_overwrite=self.cfg.save_overwrite,
|
1604 |
+
)
|
1605 |
+
|
1606 |
+
# Save optimizer state.
|
1607 |
+
log.info("Saving local optimizer state...")
|
1608 |
+
save_state_dict(
|
1609 |
+
checkpoint_dir,
|
1610 |
+
f"optim/rank{get_global_rank()}.pt",
|
1611 |
+
optim.state_dict(),
|
1612 |
+
upload_to=upload_to,
|
1613 |
+
save_overwrite=self.cfg.save_overwrite,
|
1614 |
+
)
|
1615 |
+
|
1616 |
+
# Save trainer state.
|
1617 |
+
log.info("Saving trainer state...")
|
1618 |
+
save_state_dict(
|
1619 |
+
checkpoint_dir,
|
1620 |
+
f"train/rank{get_global_rank()}.pt",
|
1621 |
+
trainer_state,
|
1622 |
+
upload_to=upload_to,
|
1623 |
+
save_overwrite=self.cfg.save_overwrite,
|
1624 |
+
)
|
1625 |
+
|
1626 |
+
# Save metadata.
|
1627 |
+
self._save_metadata(checkpoint_dir, upload_to=upload_to)
|
1628 |
+
|
1629 |
+
# Save config. We do this last b/c the presence of a config in a remote checkpoint
|
1630 |
+
# "directory" indicates that the folder is valid, as a opposed to a partially
|
1631 |
+
# uploaded checkpoint directory that failed before completing.
|
1632 |
+
self._save_config(checkpoint_dir, upload_to=upload_to)
|
1633 |
+
|
1634 |
+
def restore_checkpoint(
|
1635 |
+
self,
|
1636 |
+
load_path: PathOrStr,
|
1637 |
+
dist_model: nn.Module,
|
1638 |
+
optim: Optimizer,
|
1639 |
+
*,
|
1640 |
+
local_cache: Optional[PathOrStr] = None,
|
1641 |
+
load_optimizer_state: bool = True,
|
1642 |
+
) -> Dict[str, Any]:
|
1643 |
+
# Load metadata and make sure checkpoint is compatible.
|
1644 |
+
metadata = self._load_metadata(load_path, local_cache=local_cache)
|
1645 |
+
assert metadata.world_size == get_world_size()
|
1646 |
+
|
1647 |
+
# Load local FSDP flat param data.
|
1648 |
+
log.info("Loading local FSDP flat params data...")
|
1649 |
+
assert isinstance(
|
1650 |
+
dist_model, FSDP
|
1651 |
+
), f"{self.__class__.__name__} is being called to load a model where `distributed_strategy` is not FSDP."
|
1652 |
+
|
1653 |
+
model_state = load_state_dict(
|
1654 |
+
load_path, f"model/rank{get_global_rank()}.pt", local_cache=local_cache, map_location="cpu"
|
1655 |
+
)
|
1656 |
+
self._load_flat_param_state(dist_model, model_state)
|
1657 |
+
del model_state
|
1658 |
+
|
1659 |
+
# Load local optim state.
|
1660 |
+
if load_optimizer_state:
|
1661 |
+
log.info("Loading local optimizer state...")
|
1662 |
+
optim_state = load_state_dict(
|
1663 |
+
load_path, f"optim/rank{get_global_rank()}.pt", local_cache=local_cache, map_location="cpu"
|
1664 |
+
)
|
1665 |
+
# HACK/TODO (epwalsh): When we use adaptive clipping we track the 'grad_norm_exp_avg' for every param
|
1666 |
+
# in every rank, and keep this in the optimizer state. But this causes issues when loading the
|
1667 |
+
# state since torch sees the state is non-empty for some params which would normally be empty,
|
1668 |
+
# and then assumes it should have all of the other state tensors for that param, which is doesn't.
|
1669 |
+
# So for now we just remove 'grad_norm_exp_avg' everywhere from the state, which resets that metric.
|
1670 |
+
# Not the end of the world but there's probably a better way around this without resetting
|
1671 |
+
# the metric.
|
1672 |
+
for param_id in list(optim_state["state"].keys()):
|
1673 |
+
state = optim_state["state"][param_id]
|
1674 |
+
if "grad_norm_exp_avg" in state:
|
1675 |
+
del state["grad_norm_exp_avg"]
|
1676 |
+
if len(state) == 0:
|
1677 |
+
del optim_state["state"][param_id]
|
1678 |
+
optim.load_state_dict(optim_state)
|
1679 |
+
del optim_state
|
1680 |
+
|
1681 |
+
# Load local trainer state.
|
1682 |
+
log.info("Loading local trainer state...")
|
1683 |
+
trainer_state = load_state_dict(load_path, f"train/rank{get_global_rank()}.pt", local_cache=local_cache)
|
1684 |
+
barrier()
|
1685 |
+
return trainer_state
|
1686 |
+
|
1687 |
+
def _iter_flat_param_shards(
|
1688 |
+
self, model_state: Dict[str, Any]
|
1689 |
+
) -> Generator[Tuple[str, _FlatParamShard], None, None]:
|
1690 |
+
for module_data in model_state["modules"]:
|
1691 |
+
module_prefix = module_data["name"].replace("_fsdp_wrapped_module.", "")
|
1692 |
+
for handle in module_data["handles"]:
|
1693 |
+
flat_data = handle["flat_param.data"]
|
1694 |
+
if (num_padding := handle["flat_param._shard_numel_padded"]) > 0:
|
1695 |
+
# If there's padding in the flat param it should be on the right.
|
1696 |
+
assert (flat_data[-num_padding:] == 0).all()
|
1697 |
+
# NOTE: this changes depending on the torch version, but we don't do a version
|
1698 |
+
# check since we might be trying to unshard an old checkpoint that was stored
|
1699 |
+
# with a different torch version than we're currently running with.
|
1700 |
+
if "flat_param._shard_indices" in handle:
|
1701 |
+
# torch <=2.0.1
|
1702 |
+
param_start = handle["flat_param._shard_indices"][0]
|
1703 |
+
current_flat_index = 0
|
1704 |
+
for relative_fqn, full_shape, (offset_start, offset_end) in zip(
|
1705 |
+
handle["flat_param._fqns"][param_start:],
|
1706 |
+
handle["flat_param._shapes"][param_start:],
|
1707 |
+
handle["flat_param._shard_param_offsets"],
|
1708 |
+
):
|
1709 |
+
root_fqn = relative_fqn if not module_prefix else f"{module_prefix}.{relative_fqn}"
|
1710 |
+
numel_shard = offset_end - offset_start + 1
|
1711 |
+
flat_param_shard = _FlatParamShard(
|
1712 |
+
full_shape=full_shape,
|
1713 |
+
shard_offsets=(offset_start, offset_end),
|
1714 |
+
shard_data=flat_data[current_flat_index : current_flat_index + numel_shard],
|
1715 |
+
)
|
1716 |
+
current_flat_index += numel_shard
|
1717 |
+
yield root_fqn, flat_param_shard
|
1718 |
+
else:
|
1719 |
+
# torch >=2.1.0
|
1720 |
+
for relative_fqn, full_shape, shard_param_info in zip(
|
1721 |
+
handle["flat_param._fqns"],
|
1722 |
+
handle["flat_param._shapes"],
|
1723 |
+
handle["flat_param._shard_param_infos"],
|
1724 |
+
):
|
1725 |
+
if not shard_param_info.in_shard:
|
1726 |
+
continue
|
1727 |
+
root_fqn = relative_fqn if not module_prefix else f"{module_prefix}.{relative_fqn}"
|
1728 |
+
flat_param_shard = _FlatParamShard(
|
1729 |
+
full_shape=full_shape,
|
1730 |
+
shard_offsets=(
|
1731 |
+
shard_param_info.intra_param_start_idx,
|
1732 |
+
shard_param_info.intra_param_end_idx,
|
1733 |
+
),
|
1734 |
+
shard_data=flat_data[
|
1735 |
+
shard_param_info.offset_in_shard : shard_param_info.offset_in_shard
|
1736 |
+
+ shard_param_info.numel_in_shard
|
1737 |
+
],
|
1738 |
+
)
|
1739 |
+
yield root_fqn, flat_param_shard
|
1740 |
+
|
1741 |
+
def unshard_checkpoint(
|
1742 |
+
self,
|
1743 |
+
load_path: PathOrStr,
|
1744 |
+
*,
|
1745 |
+
local_cache: Optional[PathOrStr] = None,
|
1746 |
+
load_optimizer_state: bool = True,
|
1747 |
+
load_trainer_state: bool = True,
|
1748 |
+
device: Optional[torch.device] = None,
|
1749 |
+
) -> Tuple[Dict[str, torch.Tensor], Optional[Dict[str, Any]], Optional[Dict[str, Any]]]:
|
1750 |
+
device = device or torch.device("cpu")
|
1751 |
+
metadata = self._load_metadata(load_path, local_cache=local_cache)
|
1752 |
+
|
1753 |
+
# Gather paths model state, potentially downloading them.
|
1754 |
+
log.info("Gathering model state dicts...")
|
1755 |
+
model_state_paths = self._gather_state_dict_paths(
|
1756 |
+
load_path, "model", metadata.world_size, local_cache=local_cache
|
1757 |
+
)
|
1758 |
+
|
1759 |
+
# Load model state dicts one-by-one, materializing and populating the full parameters as we go.
|
1760 |
+
log.info("Materializing full parameters...")
|
1761 |
+
full_model_state: Dict[str, torch.Tensor] = {}
|
1762 |
+
# We keep a copy of the flat param metadata minus the actual tensors so we can reconstruct
|
1763 |
+
# the full optimizer state below without having to reload the model state dicts.
|
1764 |
+
flat_params_data: Dict[int, Dict[str, _FlatParamShard]] = defaultdict(dict)
|
1765 |
+
for rank, path in enumerate(model_state_paths):
|
1766 |
+
log.info(f"Loading shards from rank {rank}...")
|
1767 |
+
model_state = torch.load(path, map_location="cpu")
|
1768 |
+
for root_fqn, flat_param_shard in self._iter_flat_param_shards(model_state):
|
1769 |
+
if root_fqn not in full_model_state:
|
1770 |
+
log.info(
|
1771 |
+
f"Materializing full parameter '{root_fqn}' with shape {flat_param_shard.full_shape}..."
|
1772 |
+
)
|
1773 |
+
assert flat_param_shard.shard_data is not None
|
1774 |
+
full_model_state[root_fqn] = torch.empty(
|
1775 |
+
flat_param_shard.full_shape, dtype=flat_param_shard.shard_data.dtype, device=device
|
1776 |
+
)
|
1777 |
+
# Fill with NaNs so we can validate that the whole parameter has been populated
|
1778 |
+
# afterwards.
|
1779 |
+
full_model_state[root_fqn].fill_(torch.nan)
|
1780 |
+
# Copy over the local shard to the relevant part of the full parameter.
|
1781 |
+
full_param = full_model_state[root_fqn]
|
1782 |
+
log.info(f"Loading rank {rank} shard for '{root_fqn}'...")
|
1783 |
+
flat_param_shard.copy_into(full_param)
|
1784 |
+
flat_params_data[rank][root_fqn] = replace(flat_param_shard, shard_data=None)
|
1785 |
+
|
1786 |
+
log.info("Validating full parameters...")
|
1787 |
+
for key, tensor in full_model_state.items():
|
1788 |
+
if torch.isnan(tensor).any():
|
1789 |
+
raise ValueError(f"Parameter '{key}' contains NaNs, this is likely a bug with the unsharder")
|
1790 |
+
|
1791 |
+
trainer_state: Optional[Dict[str, Any]] = None
|
1792 |
+
if load_trainer_state:
|
1793 |
+
trainer_state = load_state_dict(load_path, "train/rank0.pt", local_cache=local_cache)
|
1794 |
+
|
1795 |
+
if not load_optimizer_state:
|
1796 |
+
return full_model_state, None, trainer_state
|
1797 |
+
|
1798 |
+
log.info("Gathering optim state dicts...")
|
1799 |
+
optim_state_paths = self._gather_state_dict_paths(
|
1800 |
+
load_path, "optim", metadata.world_size, local_cache=local_cache
|
1801 |
+
)
|
1802 |
+
|
1803 |
+
log.info("Materializing full optim state...")
|
1804 |
+
full_optim_state: Dict[str, Any] = {"state": defaultdict(dict)}
|
1805 |
+
fqn_to_id: Dict[str, int] = {}
|
1806 |
+
id_to_fqn: Dict[int, str] = {}
|
1807 |
+
for rank, path in enumerate(optim_state_paths):
|
1808 |
+
log.info(f"Loading sharded optim state from rank {rank}...")
|
1809 |
+
optim_state = torch.load(path, map_location="cpu")
|
1810 |
+
|
1811 |
+
# Initialize param groups.
|
1812 |
+
# We assume parameter groups are the same across all ranks.
|
1813 |
+
# The only thing that differs across ranks is the state for each local sharded param.
|
1814 |
+
if "param_groups" not in full_optim_state:
|
1815 |
+
full_optim_state["param_groups"] = optim_state["param_groups"]
|
1816 |
+
else:
|
1817 |
+
assert full_optim_state["param_groups"] == optim_state["param_groups"]
|
1818 |
+
|
1819 |
+
# Generate mapping of parameter FQNs to optimizer param IDs and vice-versa.
|
1820 |
+
if not fqn_to_id or not id_to_fqn:
|
1821 |
+
for group in full_optim_state["param_groups"]:
|
1822 |
+
for fqn, id in zip(group["param_names"], group["params"]):
|
1823 |
+
fqn = fqn.replace("_fsdp_wrapped_module.", "")
|
1824 |
+
fqn_to_id[fqn] = id
|
1825 |
+
id_to_fqn[id] = fqn
|
1826 |
+
|
1827 |
+
# Iterate over local shard state and copy into the full state.
|
1828 |
+
for id, shard_state in optim_state["state"].items():
|
1829 |
+
fqn = id_to_fqn[id]
|
1830 |
+
flat_param_shard = flat_params_data[rank].get(fqn) # type: ignore[assignment]
|
1831 |
+
full_state = full_optim_state["state"][id]
|
1832 |
+
for key, shard_value in shard_state.items():
|
1833 |
+
assert isinstance(shard_value, torch.Tensor)
|
1834 |
+
if shard_value.shape == torch.Size([]):
|
1835 |
+
# Add singleton tensors directly to full state. These should be the same across
|
1836 |
+
# all ranks.
|
1837 |
+
assert key in ("step", "grad_norm_exp_avg") # sanity check
|
1838 |
+
if key not in full_state:
|
1839 |
+
full_state[key] = shard_value.to(device)
|
1840 |
+
else:
|
1841 |
+
assert full_state[key] == shard_value
|
1842 |
+
else:
|
1843 |
+
# Otherwise we have a sharded param state.
|
1844 |
+
# If the corresponding full param state hasn't been materialized yet, do so now.
|
1845 |
+
assert flat_param_shard is not None, f"missing flat_params_data for {fqn} from rank {rank}"
|
1846 |
+
if key not in full_state:
|
1847 |
+
log.info(
|
1848 |
+
f"Materializing full state '{key}' for '{fqn}' with shape {flat_param_shard.full_shape}..."
|
1849 |
+
)
|
1850 |
+
full_state[key] = torch.empty(
|
1851 |
+
flat_param_shard.full_shape, dtype=shard_value.dtype, device=device
|
1852 |
+
)
|
1853 |
+
full_state_value = full_state[key]
|
1854 |
+
|
1855 |
+
# Copy over the local shard state to the relevant part of the full parameter state.
|
1856 |
+
log.info(f"Loading rank {rank} shard state of '{key}' for '{fqn}'...")
|
1857 |
+
replace(flat_param_shard, shard_data=shard_value).copy_into(full_state_value)
|
1858 |
+
|
1859 |
+
# Lastly, clean up the parameter names in param groups.
|
1860 |
+
for group in full_optim_state["param_groups"]:
|
1861 |
+
group["param_names"] = [n.replace("_fsdp_wrapped_module.", "") for n in group["param_names"]]
|
1862 |
+
|
1863 |
+
return full_model_state, full_optim_state, trainer_state
|
1864 |
+
|
1865 |
+
def _get_state_dict_path(
|
1866 |
+
self,
|
1867 |
+
load_path: PathOrStr,
|
1868 |
+
state_dict_type: str,
|
1869 |
+
rank: int,
|
1870 |
+
*,
|
1871 |
+
local_cache: Optional[PathOrStr] = None,
|
1872 |
+
progress=None,
|
1873 |
+
) -> Tuple[int, Path]:
|
1874 |
+
fname = f"{state_dict_type}/rank{rank}.pt"
|
1875 |
+
return rank, resource_path(str(load_path).rstrip("/"), fname, local_cache=local_cache, progress=progress)
|
1876 |
+
|
1877 |
+
def _gather_state_dict_paths(
|
1878 |
+
self,
|
1879 |
+
load_path: PathOrStr,
|
1880 |
+
state_dict_type: str,
|
1881 |
+
world_size: int,
|
1882 |
+
*,
|
1883 |
+
local_cache: Optional[PathOrStr] = None,
|
1884 |
+
) -> List[Path]:
|
1885 |
+
progress = get_progress_bar()
|
1886 |
+
with ThreadPoolExecutor(max_workers=self.thread_count) as executor:
|
1887 |
+
futures = []
|
1888 |
+
for rank in range(world_size):
|
1889 |
+
future = executor.submit(
|
1890 |
+
self._get_state_dict_path,
|
1891 |
+
load_path,
|
1892 |
+
state_dict_type,
|
1893 |
+
rank,
|
1894 |
+
local_cache=local_cache,
|
1895 |
+
progress=progress,
|
1896 |
+
)
|
1897 |
+
futures.append(future)
|
1898 |
+
|
1899 |
+
results: Dict[int, Path] = {}
|
1900 |
+
for future in as_completed(futures):
|
1901 |
+
rank, path = future.result()
|
1902 |
+
results[rank] = path
|
1903 |
+
|
1904 |
+
return [results[rank] for rank in range(world_size)]
|
1905 |
+
|
1906 |
+
|
1907 |
+
class OlmoCoreCheckpointer(Checkpointer):
|
1908 |
+
def save_checkpoint(
|
1909 |
+
self,
|
1910 |
+
dir: PathOrStr,
|
1911 |
+
dist_model: nn.Module,
|
1912 |
+
optim: Optimizer,
|
1913 |
+
trainer_state: Dict[str, Any],
|
1914 |
+
*,
|
1915 |
+
upload_to: Optional[str] = None,
|
1916 |
+
) -> None:
|
1917 |
+
from olmo_core.distributed.checkpoint import ( # type: ignore
|
1918 |
+
save_model_and_optim_state,
|
1919 |
+
)
|
1920 |
+
|
1921 |
+
with self._temporary_wd(dir) as checkpoint_dir:
|
1922 |
+
log.info("Saving model and optim state...")
|
1923 |
+
if get_fs_local_rank() == 0:
|
1924 |
+
(checkpoint_dir / "model").mkdir(exist_ok=True, parents=True)
|
1925 |
+
(checkpoint_dir / "optim").mkdir(exist_ok=True, parents=True)
|
1926 |
+
(checkpoint_dir / "train").mkdir(exist_ok=True, parents=True)
|
1927 |
+
|
1928 |
+
wait_for(
|
1929 |
+
lambda: (checkpoint_dir / "model").exists(), "Waiting for checkpoint model directory", timeout=10.0
|
1930 |
+
)
|
1931 |
+
wait_for(
|
1932 |
+
lambda: (checkpoint_dir / "optim").exists(), "Waiting for checkpoint optim directory", timeout=10.0
|
1933 |
+
)
|
1934 |
+
wait_for(
|
1935 |
+
lambda: (checkpoint_dir / "train").exists(), "Waiting for checkpoint train directory", timeout=10.0
|
1936 |
+
)
|
1937 |
+
|
1938 |
+
local_files_created = save_model_and_optim_state(checkpoint_dir, dist_model, optim)
|
1939 |
+
if upload_to is not None:
|
1940 |
+
for path in local_files_created:
|
1941 |
+
path = Path(path)
|
1942 |
+
upload_target = f"{upload_to.rstrip('/')}/{path.relative_to(checkpoint_dir)}"
|
1943 |
+
log.info(f"Uploading {path} to {upload_target}...")
|
1944 |
+
upload(path, upload_target, save_overwrite=self.cfg.save_overwrite)
|
1945 |
+
|
1946 |
+
log.info("Saving trainer state...")
|
1947 |
+
save_state_dict(
|
1948 |
+
checkpoint_dir,
|
1949 |
+
f"train/rank{get_global_rank()}.pt",
|
1950 |
+
trainer_state,
|
1951 |
+
upload_to=upload_to,
|
1952 |
+
)
|
1953 |
+
|
1954 |
+
self._save_config(checkpoint_dir, upload_to=upload_to)
|
1955 |
+
|
1956 |
+
def restore_checkpoint(
|
1957 |
+
self,
|
1958 |
+
load_path: PathOrStr,
|
1959 |
+
dist_model: nn.Module,
|
1960 |
+
optim: Optimizer,
|
1961 |
+
*,
|
1962 |
+
local_cache: Optional[PathOrStr] = None,
|
1963 |
+
load_optimizer_state: bool = True,
|
1964 |
+
) -> Dict[str, Any]:
|
1965 |
+
from olmo_core.distributed.checkpoint import ( # type: ignore
|
1966 |
+
load_model_and_optim_state,
|
1967 |
+
)
|
1968 |
+
|
1969 |
+
log.info("Loading model and optim state...")
|
1970 |
+
load_model_and_optim_state(load_path, dist_model, optim if load_optimizer_state else None)
|
1971 |
+
|
1972 |
+
log.info("Loading trainer state...")
|
1973 |
+
try:
|
1974 |
+
trainer_state = load_state_dict(
|
1975 |
+
load_path, f"train/rank{get_global_rank()}.pt", local_cache=local_cache
|
1976 |
+
)
|
1977 |
+
except FileNotFoundError:
|
1978 |
+
# Fall back to rank 0 train state.
|
1979 |
+
# This can happen when we're restoring a checkpoint with a different world size.
|
1980 |
+
trainer_state = load_state_dict(load_path, "train/rank0.pt", local_cache=local_cache)
|
1981 |
+
|
1982 |
+
barrier()
|
1983 |
+
return trainer_state
|
1984 |
+
|
1985 |
+
def unshard_checkpoint(
|
1986 |
+
self,
|
1987 |
+
load_path: PathOrStr,
|
1988 |
+
*,
|
1989 |
+
local_cache: Optional[PathOrStr] = None,
|
1990 |
+
load_optimizer_state: bool = True,
|
1991 |
+
load_trainer_state: bool = True,
|
1992 |
+
device: Optional[torch.device] = None,
|
1993 |
+
) -> Tuple[Dict[str, torch.Tensor], Optional[Dict[str, Any]], Optional[Dict[str, Any]]]:
|
1994 |
+
from olmo_core.distributed.checkpoint import ( # type: ignore
|
1995 |
+
unshard_model_state,
|
1996 |
+
unshard_optim_state,
|
1997 |
+
)
|
1998 |
+
|
1999 |
+
model_state = unshard_model_state(load_path, device=device)
|
2000 |
+
optim_state: Optional[Dict[str, Any]] = None
|
2001 |
+
train_state: Optional[Dict[str, Any]] = None
|
2002 |
+
if load_optimizer_state:
|
2003 |
+
optim_state = cast(Dict[str, Any], unshard_optim_state(load_path, device=device))
|
2004 |
+
if load_trainer_state:
|
2005 |
+
train_state = load_state_dict(load_path, "train/rank0.pt", local_cache=local_cache)
|
2006 |
+
return model_state, optim_state, train_state
|
2007 |
+
|
2008 |
+
|
2009 |
+
def build_sharded_checkpointer(
|
2010 |
+
cfg: TrainConfig, *, name: Optional[ShardedCheckpointerType] = None, use_shared_mem_impl: bool = False
|
2011 |
+
) -> Checkpointer:
|
2012 |
+
name = name or cfg.sharded_checkpointer
|
2013 |
+
if name == ShardedCheckpointerType.torch_new:
|
2014 |
+
return TorchNewStyleShardedCheckpointer(cfg)
|
2015 |
+
elif name == ShardedCheckpointerType.torch_legacy:
|
2016 |
+
return TorchLegacyShardedCheckpointer(cfg, use_shared_mem_impl=use_shared_mem_impl)
|
2017 |
+
elif name == ShardedCheckpointerType.local:
|
2018 |
+
return LocalShardedCheckpointer(cfg)
|
2019 |
+
elif name == ShardedCheckpointerType.olmo_core:
|
2020 |
+
return OlmoCoreCheckpointer(cfg)
|
2021 |
+
else:
|
2022 |
+
raise NotImplementedError(name)
|
config.json
CHANGED
@@ -1,29 +1,143 @@
|
|
1 |
{
|
2 |
-
"architectures": [
|
3 |
-
"MOLMoEForCausalLM"
|
4 |
-
],
|
5 |
"auto_map": {
|
6 |
-
|
7 |
-
|
8 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
"clip_qkv": null,
|
|
|
|
|
|
|
|
|
|
|
10 |
"embedding_size": 50304,
|
11 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
"initializer_range": 0.02,
|
13 |
-
"intermediate_size": 1024,
|
14 |
"layer_norm_eps": 1e-05,
|
15 |
-
"
|
16 |
-
"
|
17 |
-
"
|
18 |
-
"
|
19 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
"qkv_bias": false,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
"rope_theta": 10000.0,
|
22 |
-
"
|
23 |
-
"
|
24 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
"use_cache": true,
|
|
|
|
|
26 |
"use_position_ids": true,
|
27 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
"weight_tying": false
|
29 |
}
|
|
|
1 |
{
|
|
|
|
|
|
|
2 |
"auto_map": {
|
3 |
+
"AutoConfig": "config_molmoe.MolmoConfig",
|
4 |
+
"AutoModelForCausalLM": "modeling_molmoe.MolmoForCausalLM"
|
5 |
},
|
6 |
+
"activation_type": "swiglu",
|
7 |
+
"additional_vocab_size": 128,
|
8 |
+
"alibi": false,
|
9 |
+
"alibi_bias_max": 8.0,
|
10 |
+
"always_start_with_space": true,
|
11 |
+
"architectures": [
|
12 |
+
"OLMoForCausalLM"
|
13 |
+
],
|
14 |
+
"attention_dropout": 0.0,
|
15 |
+
"attention_layer_norm": true,
|
16 |
+
"attention_layer_norm_with_affine": true,
|
17 |
+
"attention_type": "sdpa",
|
18 |
+
"attn_logit_softcapping": null,
|
19 |
+
"bias_for_layer_norm": false,
|
20 |
+
"block_group_size": 1,
|
21 |
+
"block_type": "moe",
|
22 |
"clip_qkv": null,
|
23 |
+
"crop_mode": "overlap-and-resize-c2",
|
24 |
+
"d_model": 2048,
|
25 |
+
"default_inference_len": 65,
|
26 |
+
"do_random_scale": false,
|
27 |
+
"embedding_dropout": 0.0,
|
28 |
"embedding_size": 50304,
|
29 |
+
"final_logit_softcapping": null,
|
30 |
+
"fix_image_input_idx": 2,
|
31 |
+
"float32_attention": true,
|
32 |
+
"gin_bindings": null,
|
33 |
+
"head_dim": null,
|
34 |
+
"image_feature_dropout": 0.0,
|
35 |
+
"image_padding_embed": "pad_and_partial_pad",
|
36 |
+
"image_pooling_2d": "attention-meanq",
|
37 |
+
"image_pooling_h": 2,
|
38 |
+
"image_pooling_w": 2,
|
39 |
+
"image_projector": "mlp",
|
40 |
+
"include_bias": false,
|
41 |
+
"init_cutoff_factor": 3.0,
|
42 |
+
"init_device": "meta",
|
43 |
+
"init_fn": "normal",
|
44 |
+
"init_std": 0.02,
|
45 |
"initializer_range": 0.02,
|
|
|
46 |
"layer_norm_eps": 1e-05,
|
47 |
+
"layer_norm_type": "rms",
|
48 |
+
"layer_norm_with_affine": true,
|
49 |
+
"llm_load_path": null,
|
50 |
+
"loss_token_weighting": "root_subsegments",
|
51 |
+
"low_cpu_fsdp": true,
|
52 |
+
"max_crops": 12,
|
53 |
+
"max_position_embeddings": 32768,
|
54 |
+
"max_sequence_length": 4096,
|
55 |
+
"message_formatting": "role",
|
56 |
+
"mlp_hidden_size": null,
|
57 |
+
"mlp_ratio": 1,
|
58 |
+
"model_type": "molmo",
|
59 |
+
"moe_capacity_factor": 1.25,
|
60 |
+
"moe_dropless": true,
|
61 |
+
"moe_interleave": false,
|
62 |
+
"moe_lbl_in_fp32": false,
|
63 |
+
"moe_log_expert_assignment": false,
|
64 |
+
"moe_loss_weight": 0.0,
|
65 |
+
"moe_mlp_impl": "sparse",
|
66 |
+
"moe_num_experts": 64,
|
67 |
+
"moe_shared_expert": false,
|
68 |
+
"moe_top_k": 8,
|
69 |
+
"moe_zloss_weight": 0.0,
|
70 |
+
"multi_query_attention": null,
|
71 |
+
"n_heads": 16,
|
72 |
+
"n_kv_heads": null,
|
73 |
+
"n_layers": 16,
|
74 |
+
"new_embedding_init_range": 0.02,
|
75 |
+
"norm_after": false,
|
76 |
+
"normalize_input_embeds": false,
|
77 |
+
"overlap_margins": [
|
78 |
+
4,
|
79 |
+
4
|
80 |
+
],
|
81 |
+
"pad_to": null,
|
82 |
+
"pad_token_id": 1,
|
83 |
+
"pad_tokenizer": false,
|
84 |
+
"precision": "amp_bf16",
|
85 |
+
"prompt_override": null,
|
86 |
+
"prompt_type": "uber_model",
|
87 |
"qkv_bias": false,
|
88 |
+
"query_pre_attn_scalar": 224,
|
89 |
+
"residual_dropout": 0.1,
|
90 |
+
"response_attention_dropout": 0.0,
|
91 |
+
"response_residual_dropout": 0.0,
|
92 |
+
"rope": true,
|
93 |
+
"rope_full_precision": true,
|
94 |
+
"rope_impl": "llama",
|
95 |
"rope_theta": 10000.0,
|
96 |
+
"scale_logits": false,
|
97 |
+
"system_prompt_kind": "demo_or_style",
|
98 |
+
"tokenizer": {
|
99 |
+
"identifier": "allenai/gpt-neox-olmo-dolma-v1_5",
|
100 |
+
"olmo_bos_token_id": null,
|
101 |
+
"olmo_eos_token_id": null,
|
102 |
+
"tokenizer_adds_space": false,
|
103 |
+
"tokenizer_dir": null,
|
104 |
+
"truncate_direction": "right"
|
105 |
+
},
|
106 |
+
"transformers_version": "4.45.0.dev0",
|
107 |
+
"unconditioned": false,
|
108 |
"use_cache": true,
|
109 |
+
"use_cls_feature": false,
|
110 |
+
"use_col_tokens": true,
|
111 |
"use_position_ids": true,
|
112 |
+
"vision_backbone": {
|
113 |
+
"attention_dropout": 0.0,
|
114 |
+
"fsdp_wrap": false,
|
115 |
+
"image_default_input_size": [
|
116 |
+
336,
|
117 |
+
336
|
118 |
+
],
|
119 |
+
"image_dropout_rate": 0.0,
|
120 |
+
"image_emb_dim": 1024,
|
121 |
+
"image_head_dim": 64,
|
122 |
+
"image_mlp_activations": "quick_gelu",
|
123 |
+
"image_mlp_dim": 4096,
|
124 |
+
"image_model_type": "openai",
|
125 |
+
"image_norm_eps": 1e-05,
|
126 |
+
"image_num_heads": 16,
|
127 |
+
"image_num_key_value_heads": 16,
|
128 |
+
"image_num_layers": 23,
|
129 |
+
"image_num_pos": 577,
|
130 |
+
"image_patch_size": 14,
|
131 |
+
"image_pos_patch_size": 14,
|
132 |
+
"initializer_range": 0.02,
|
133 |
+
"residual_dropout": 0.0,
|
134 |
+
"resize_mode": "default"
|
135 |
+
},
|
136 |
+
"vit_layers": [
|
137 |
+
-2,
|
138 |
+
-9
|
139 |
+
],
|
140 |
+
"vit_load_path": null,
|
141 |
+
"vocab_size": 50280,
|
142 |
"weight_tying": false
|
143 |
}
|
config_molmoe.py
CHANGED
@@ -1,90 +1,909 @@
|
|
1 |
-
from
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
)
|
89 |
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import logging
|
4 |
+
from dataclasses import asdict, dataclass, field
|
5 |
+
from glob import glob
|
6 |
+
from pathlib import Path
|
7 |
+
from typing import (
|
8 |
+
Any,
|
9 |
+
Dict,
|
10 |
+
Iterable,
|
11 |
+
List,
|
12 |
+
Optional,
|
13 |
+
Tuple,
|
14 |
+
Type,
|
15 |
+
TypeVar,
|
16 |
+
Union,
|
17 |
+
cast,
|
18 |
+
)
|
19 |
+
|
20 |
+
import torch
|
21 |
+
from transformers import PretrainedConfig
|
22 |
+
from omegaconf import DictConfig, ListConfig, OmegaConf
|
23 |
+
from omegaconf import OmegaConf as om
|
24 |
+
from omegaconf.errors import OmegaConfBaseException
|
25 |
+
from torch.distributed.fsdp import MixedPrecision, ShardingStrategy
|
26 |
+
import gin
|
27 |
+
|
28 |
+
#from olmo.aliases import PathOrStr
|
29 |
+
from .aliases import PathOrStr
|
30 |
+
from olmo.exceptions import OLMoConfigurationError
|
31 |
+
from olmo.util import StrEnum, resource_path
|
32 |
+
|
33 |
+
from olmo.mm_data.data_utils import build_tokenizer
|
34 |
+
from olmo.multimodal_preprocessor import MultiModalPreprocessor
|
35 |
+
|
36 |
+
__all__ = [
|
37 |
+
"ActivationType",
|
38 |
+
"ActivationCheckpointingStrategy",
|
39 |
+
"BlockType",
|
40 |
+
"LayerNormType",
|
41 |
+
"VisionBackboneType",
|
42 |
+
"VisionBackboneConfig",
|
43 |
+
"InitFnType",
|
44 |
+
"ModelConfig",
|
45 |
+
"OptimizerType",
|
46 |
+
"OptimizerConfig",
|
47 |
+
"SchedulerType",
|
48 |
+
"SchedulerConfig",
|
49 |
+
"DataConfig",
|
50 |
+
"InstanceFilterConfig",
|
51 |
+
"EvaluatorConfig",
|
52 |
+
"TokenizerConfig",
|
53 |
+
"TrainConfig",
|
54 |
+
"PaddingDirection",
|
55 |
+
"TruncationDirection",
|
56 |
+
"SpeedMonitorConfig",
|
57 |
+
"WandbConfig",
|
58 |
+
"CompilerConfig",
|
59 |
+
"WandbConfig",
|
60 |
+
"FSDPPrecision",
|
61 |
+
"FSDPWrapStrategy",
|
62 |
+
"FSDPConfig",
|
63 |
+
"CheckpointType",
|
64 |
+
]
|
65 |
+
|
66 |
+
C = TypeVar("C", bound="BaseConfig")
|
67 |
+
D = TypeVar("D", bound="DictConfig|ListConfig")
|
68 |
+
|
69 |
+
|
70 |
+
class AttentionType(StrEnum):
|
71 |
+
sdpa = "sdpa"
|
72 |
+
direct = "direct"
|
73 |
+
flash = "flash"
|
74 |
+
|
75 |
+
|
76 |
+
class BaseConfig:
|
77 |
+
@classmethod
|
78 |
+
def _register_resolvers(cls, validate_paths: bool = True):
|
79 |
+
# Expands path globs into a list.
|
80 |
+
def path_glob(*paths) -> List[str]:
|
81 |
+
out = []
|
82 |
+
for path in paths:
|
83 |
+
matches = sorted(glob(path))
|
84 |
+
if not matches and validate_paths:
|
85 |
+
raise FileNotFoundError(f"{path} does not match any files or dirs")
|
86 |
+
out.extend(matches)
|
87 |
+
return out
|
88 |
+
|
89 |
+
# Chooses the first path in the arguments that exists.
|
90 |
+
def path_choose(*paths) -> str:
|
91 |
+
from .util import is_url
|
92 |
+
|
93 |
+
for path in paths:
|
94 |
+
if is_url(path) or Path(path).exists():
|
95 |
+
return path
|
96 |
+
if validate_paths:
|
97 |
+
raise FileNotFoundError(", ".join(paths))
|
98 |
+
else:
|
99 |
+
return ""
|
100 |
+
|
101 |
+
# Finds the latest checkpoint in a folder.
|
102 |
+
def path_last_checkpoint(path) -> str:
|
103 |
+
from .util import find_latest_checkpoint
|
104 |
+
|
105 |
+
latest_checkpoint = find_latest_checkpoint(path)
|
106 |
+
if latest_checkpoint is None:
|
107 |
+
if validate_paths:
|
108 |
+
raise FileNotFoundError(f"Could not find a latest checkpoint at {path}")
|
109 |
+
else:
|
110 |
+
return ""
|
111 |
+
else:
|
112 |
+
return str(latest_checkpoint)
|
113 |
+
|
114 |
+
om.register_new_resolver("path.glob", path_glob, replace=True)
|
115 |
+
om.register_new_resolver("path.choose", path_choose, replace=True)
|
116 |
+
om.register_new_resolver("path.last_checkpoint", path_last_checkpoint, replace=True)
|
117 |
+
|
118 |
+
@classmethod
|
119 |
+
def update_legacy_settings(cls, config: D) -> D:
|
120 |
+
"""
|
121 |
+
Update the legacy config settings whose schemas have undergone backwards-incompatible changes.
|
122 |
+
"""
|
123 |
+
return config
|
124 |
+
|
125 |
+
@classmethod
|
126 |
+
def new(cls: Type[C], **kwargs) -> C:
|
127 |
+
cls._register_resolvers()
|
128 |
+
conf = om.structured(cls)
|
129 |
+
try:
|
130 |
+
if kwargs:
|
131 |
+
conf = om.merge(conf, kwargs)
|
132 |
+
return cast(C, om.to_object(conf))
|
133 |
+
except OmegaConfBaseException as e:
|
134 |
+
raise OLMoConfigurationError(str(e))
|
135 |
+
|
136 |
+
@classmethod
|
137 |
+
def load(
|
138 |
+
cls: Type[C],
|
139 |
+
path: PathOrStr,
|
140 |
+
overrides: Optional[List[str]] = None,
|
141 |
+
key: Optional[str] = None,
|
142 |
+
validate_paths: bool = True,
|
143 |
+
) -> C:
|
144 |
+
"""Load from a YAML file."""
|
145 |
+
cls._register_resolvers(validate_paths=validate_paths)
|
146 |
+
schema = om.structured(cls)
|
147 |
+
try:
|
148 |
+
raw = om.load(str(path))
|
149 |
+
|
150 |
+
# Backwards compatibility hack, we need this here not in `update_legacy_settings`
|
151 |
+
# since it has to be applied before selecting with `key`
|
152 |
+
if "tokenizer" in raw and "model" in raw:
|
153 |
+
raw["model"]["tokenizer"] = raw.pop("tokenizer")
|
154 |
+
|
155 |
+
if key is not None:
|
156 |
+
raw = raw[key] # type: ignore
|
157 |
+
raw = cls.update_legacy_settings(raw)
|
158 |
+
conf = om.merge(schema, raw)
|
159 |
+
if overrides:
|
160 |
+
conf = om.merge(conf, om.from_dotlist(overrides))
|
161 |
+
return cast(C, om.to_object(conf))
|
162 |
+
except OmegaConfBaseException as e:
|
163 |
+
raise OLMoConfigurationError(str(e))
|
164 |
+
|
165 |
+
def save(self, path: PathOrStr) -> None:
|
166 |
+
"""Save to a YAML file."""
|
167 |
+
om.save(config=self, f=str(path))
|
168 |
+
|
169 |
+
def asdict(self, exclude: Optional[Iterable[str]] = None) -> Dict[str, Any]:
|
170 |
+
out = asdict(self) # type: ignore
|
171 |
+
if exclude is not None:
|
172 |
+
for name in exclude:
|
173 |
+
if name in out:
|
174 |
+
del out[name]
|
175 |
+
return out
|
176 |
+
|
177 |
+
|
178 |
+
class LayerNormType(StrEnum):
|
179 |
+
default = "default"
|
180 |
+
"""
|
181 |
+
The default LayerNorm implementation, equivalent to PyTorch's built-in version.
|
182 |
+
"""
|
183 |
+
|
184 |
+
low_precision = "low_precision"
|
185 |
+
"""
|
186 |
+
A low-precision version of the default LayerNorm.
|
187 |
+
"""
|
188 |
+
|
189 |
+
rms = "rms"
|
190 |
+
"""
|
191 |
+
An RMSNorm implementation. When using ``torch.compile`` this is
|
192 |
+
probably the fastest implementation.
|
193 |
+
"""
|
194 |
+
|
195 |
+
gemma_rms = "gemma_rms"
|
196 |
+
"""
|
197 |
+
A GemmaRMSNorm implementation. When using ``torch.compile`` this is
|
198 |
+
probably the fastest implementation.
|
199 |
+
"""
|
200 |
+
|
201 |
+
|
202 |
+
class ActivationType(StrEnum):
|
203 |
+
quick_gelu = "quick_gelu"
|
204 |
+
gelu = "gelu"
|
205 |
+
gelu_tanh = "gelu_tanh"
|
206 |
+
relu = "relu"
|
207 |
+
silu = "silu"
|
208 |
+
llama_geglu = "llama_geglu"
|
209 |
+
llama_geglu_tanh = "llama_geglu_tanh"
|
210 |
+
llama_swiglu = "llama_swiglu"
|
211 |
+
swiglu = "swiglu"
|
212 |
+
|
213 |
+
|
214 |
+
class BlockType(StrEnum):
|
215 |
+
sequential = "sequential"
|
216 |
+
|
217 |
+
llama = "llama"
|
218 |
+
"""
|
219 |
+
A block similar to the sequential block with slightly different
|
220 |
+
implementations of operations like attention to imitate the behavior of Llama.
|
221 |
+
"""
|
222 |
+
|
223 |
+
gemma = "gemma"
|
224 |
+
"""
|
225 |
+
A block similar to the sequential block with slightly different
|
226 |
+
implementations of operations like attention to imitate the behavior of Gemma.
|
227 |
+
"""
|
228 |
+
|
229 |
+
moe = "moe"
|
230 |
+
|
231 |
+
|
232 |
+
class InitFnType(StrEnum):
|
233 |
+
mitchell = "mitchell"
|
234 |
+
"""
|
235 |
+
The strategy suggested to us by Mitchell Wortsman from UW.
|
236 |
+
This uses a truncated normal distribution with an adaptive standard deviation that depends
|
237 |
+
on the size of the weights as well as the depth of the layer.
|
238 |
+
"""
|
239 |
+
|
240 |
+
normal = "normal"
|
241 |
+
"""
|
242 |
+
All weights are initialized from the same normal distribution.
|
243 |
+
"""
|
244 |
+
|
245 |
+
kaiming_normal = "kaiming_normal"
|
246 |
+
"""
|
247 |
+
All weights are initialized with the Kaiming method from a normal distribution.
|
248 |
+
Note this currently won't work with FSDP.
|
249 |
+
"""
|
250 |
+
|
251 |
+
fan_in = "fan_in"
|
252 |
+
"""
|
253 |
+
"Fan-in variance scaling", i.e. normal with a standard deviation of ``1/sqrt(d_in)`` where ``d_in``
|
254 |
+
is the input dimensionality of the kernel.
|
255 |
+
"""
|
256 |
+
|
257 |
+
full_megatron = "full_megatron"
|
258 |
+
"""
|
259 |
+
This is what metaseq calls "full megatron init". It is the init used for Llama 2.
|
260 |
+
"""
|
261 |
+
|
262 |
+
|
263 |
+
class VisionBackboneType(StrEnum):
|
264 |
+
openai = "openai"
|
265 |
+
|
266 |
+
|
267 |
+
class ImagePaddingEmbed(StrEnum):
|
268 |
+
pad_and_partial_pad = "pad_and_partial_pad"
|
269 |
+
pad_embed = "pad_embed"
|
270 |
+
regress = "regress"
|
271 |
+
|
272 |
+
|
273 |
+
class ImagePooling2DType(StrEnum):
|
274 |
+
attention = "attention"
|
275 |
+
attention_meanq = "attention-meanq"
|
276 |
+
attention_2wide = "attention_2wide"
|
277 |
+
attention_v2 = "attention-v2"
|
278 |
+
none = "none"
|
279 |
+
stack = "stack"
|
280 |
+
|
281 |
+
|
282 |
+
class ImageProjectType(StrEnum):
|
283 |
+
mlp = "mlp"
|
284 |
+
mlpx2 = "2mlp"
|
285 |
+
linear = "linear"
|
286 |
+
|
287 |
+
|
288 |
+
@dataclass
|
289 |
+
class VisionBackboneConfig(BaseConfig):
|
290 |
+
image_model_type: VisionBackboneType = VisionBackboneType.openai
|
291 |
+
image_default_input_size: Tuple[int, int] = (336, 336)
|
292 |
+
image_patch_size: int = 14
|
293 |
+
image_pos_patch_size: int = 14
|
294 |
+
image_emb_dim: int = 1024
|
295 |
+
image_num_heads: int = 16
|
296 |
+
image_num_key_value_heads: int = 16
|
297 |
+
image_num_layers: int = 24
|
298 |
+
image_head_dim: int = 64
|
299 |
+
image_mlp_dim: int = 4096
|
300 |
+
image_mlp_activations: ActivationType = ActivationType.gelu
|
301 |
+
image_dropout_rate: float = 0.0
|
302 |
+
image_num_pos: int = 577
|
303 |
+
image_norm_eps: float = 1e-5
|
304 |
+
attention_dropout: float = 0.0
|
305 |
+
residual_dropout: float = 0.0
|
306 |
+
initializer_range: float = 0.02
|
307 |
+
fsdp_wrap: bool = False
|
308 |
+
|
309 |
+
# how to preprocess imagse for this ViT
|
310 |
+
resize_mode: str = "default"
|
311 |
+
|
312 |
+
def __post_init__(self):
|
313 |
+
self.image_default_input_size = tuple(self.image_default_input_size) # type: ignore[assignment]
|
314 |
+
|
315 |
+
@property
|
316 |
+
def image_num_patch(self):
|
317 |
+
h, w = self.image_default_input_size
|
318 |
+
return h // self.image_patch_size, w // self.image_patch_size
|
319 |
+
|
320 |
+
|
321 |
+
class TruncationDirection(StrEnum):
|
322 |
+
right = "right"
|
323 |
+
left = "left"
|
324 |
+
|
325 |
+
|
326 |
+
@dataclass
|
327 |
+
class TokenizerConfig(BaseConfig):
|
328 |
+
identifier: str = "gpt2"
|
329 |
+
truncate_direction: TruncationDirection = TruncationDirection.right
|
330 |
+
# Does the tokenizer automatically start input text with a space
|
331 |
+
tokenizer_adds_space: Optional[bool] = False
|
332 |
+
tokenizer_dir: Optional[str] = None # tokenizer directory if using a seqio tokenizer
|
333 |
+
olmo_bos_token_id: Optional[int] = None
|
334 |
+
olmo_eos_token_id: Optional[int] = None
|
335 |
+
|
336 |
+
|
337 |
+
@dataclass
|
338 |
+
class ModelConfig(BaseConfig):
|
339 |
+
"""
|
340 |
+
OLMo (model) configuration.
|
341 |
+
"""
|
342 |
+
|
343 |
+
# Note that the defaults for these attributes are equivalent to the base GPT2 model.
|
344 |
+
|
345 |
+
d_model: int = 768
|
346 |
+
"""
|
347 |
+
The hidden size of the model.
|
348 |
+
"""
|
349 |
+
|
350 |
+
n_heads: int = 12
|
351 |
+
"""
|
352 |
+
The number of self-attention heads.
|
353 |
+
"""
|
354 |
+
|
355 |
+
n_kv_heads: Optional[int] = None
|
356 |
+
"""
|
357 |
+
The number of heads to use for keys and values. Defaults to `n_heads`.
|
358 |
+
Set this to ``None`` or ``n_heads`` for normal multi-head attention.
|
359 |
+
Set this to 1 for multi-query attention.
|
360 |
+
Set it to some in-between value for Llama2-style grouped query attention.
|
361 |
+
"""
|
362 |
+
|
363 |
+
qkv_bias: bool = False # qwen models use bias in kvq layers
|
364 |
+
|
365 |
+
clip_qkv: Optional[float] = None
|
366 |
+
"""
|
367 |
+
Clip QKV to this value when set.
|
368 |
+
"""
|
369 |
+
|
370 |
+
n_layers: int = 12
|
371 |
+
"""
|
372 |
+
The number of layers/blocks.
|
373 |
+
"""
|
374 |
+
|
375 |
+
mlp_ratio: int = 4
|
376 |
+
"""
|
377 |
+
The ratio of the inner MLP dimensionality to ``d_model``.
|
378 |
+
This is only used when ``mlp_hidden_size`` is not set.
|
379 |
+
"""
|
380 |
+
|
381 |
+
mlp_hidden_size: Optional[int] = None
|
382 |
+
"""
|
383 |
+
Set the exact hidden size for the MLP. Otherwise the inner MLP hidden size will be set to `mlp_ratio * d_model`.
|
384 |
+
"""
|
385 |
+
|
386 |
+
activation_type: ActivationType = ActivationType.swiglu
|
387 |
+
"""
|
388 |
+
The activation function to use within the MLP layers.
|
389 |
+
"""
|
390 |
+
|
391 |
+
block_type: BlockType = BlockType.sequential
|
392 |
+
"""
|
393 |
+
The transformer block implementation.
|
394 |
+
"""
|
395 |
+
|
396 |
+
block_group_size: int = 1
|
397 |
+
"""
|
398 |
+
The number of blocks to group together into a single parent block.
|
399 |
+
This has no affect on the number of parameters in the model and is only used to wrap groups
|
400 |
+
of blocks together with a single FSDP wrapper during training.
|
401 |
+
"""
|
402 |
+
|
403 |
+
alibi: bool = False
|
404 |
+
"""
|
405 |
+
If ``True``, use ALiBi embeddings. Mutually exclusive with ``rope``.
|
406 |
+
"""
|
407 |
+
|
408 |
+
alibi_bias_max: float = 8.0
|
409 |
+
"""
|
410 |
+
Maximum absolute value of ALiBi bias.
|
411 |
+
"""
|
412 |
+
|
413 |
+
rope: bool = False
|
414 |
+
"""
|
415 |
+
Use rotary positional embeddings (RoPE). Mutually exclusive with ``alibi``.
|
416 |
+
"""
|
417 |
+
|
418 |
+
rope_full_precision: bool = True
|
419 |
+
"""
|
420 |
+
If ``True``, apply RoPE embeddings at full precision regardless of the input type. Otherwise,
|
421 |
+
apply RoPE at the precision of the input.
|
422 |
+
"""
|
423 |
+
|
424 |
+
rope_theta: float = 10000.
|
425 |
+
|
426 |
+
rope_impl: str = "cockatoo"
|
427 |
+
|
428 |
+
vision_backbone: Optional[VisionBackboneConfig] = None
|
429 |
+
"""
|
430 |
+
Vision backbone settings for multi-modal models.
|
431 |
+
"""
|
432 |
+
|
433 |
+
vit_load_path: Optional[str] = None
|
434 |
+
"""
|
435 |
+
Use this to load the vit model.
|
436 |
+
"""
|
437 |
+
|
438 |
+
llm_load_path: Optional[str] = None
|
439 |
+
"""
|
440 |
+
Use this to partially load the llm transformer.
|
441 |
+
"""
|
442 |
+
|
443 |
+
low_cpu_fsdp: bool = True
|
444 |
+
"""
|
445 |
+
If ``True``, we save cpu memory by loading the pretrained vision model on randk0 only
|
446 |
+
when init_device is `meta`.
|
447 |
+
If TrainConfig.load_path is set, this should be set to ``False`` (default: True)
|
448 |
+
"""
|
449 |
+
|
450 |
+
attention_type: AttentionType = AttentionType.sdpa
|
451 |
+
"""
|
452 |
+
Attention implementation to use.
|
453 |
+
"""
|
454 |
+
|
455 |
+
float32_attention: bool = True
|
456 |
+
"""
|
457 |
+
Compute attention in float32
|
458 |
+
"""
|
459 |
+
|
460 |
+
attention_dropout: float = 0.1
|
461 |
+
"""
|
462 |
+
The dropout probability within the attention modules.
|
463 |
+
"""
|
464 |
+
|
465 |
+
# Only apply dropout to response tokens
|
466 |
+
response_attention_dropout: float = 0.0
|
467 |
+
|
468 |
+
multi_query_attention: Optional[bool] = None
|
469 |
+
"""
|
470 |
+
Deprecated. Use n_kv_heads instead.
|
471 |
+
"""
|
472 |
+
|
473 |
+
attention_layer_norm: bool = False
|
474 |
+
"""
|
475 |
+
Apply layer norm to the keys and queries within the attention mechanism.
|
476 |
+
This can help stabilize training.
|
477 |
+
"""
|
478 |
+
|
479 |
+
residual_dropout: float = 0.1
|
480 |
+
"""
|
481 |
+
The dropout probability for the MLP and attention output within each block.
|
482 |
+
"""
|
483 |
+
|
484 |
+
# Only apply dropout to response tokens
|
485 |
+
response_residual_dropout: float = 0.0
|
486 |
+
|
487 |
+
embedding_dropout: float = 0.1
|
488 |
+
"""
|
489 |
+
The dropout probability for embeddings.
|
490 |
+
"""
|
491 |
+
|
492 |
+
layer_norm_type: LayerNormType = LayerNormType.default
|
493 |
+
"""
|
494 |
+
The layernorm implementation to use.
|
495 |
+
"""
|
496 |
+
|
497 |
+
layer_norm_with_affine: bool = True
|
498 |
+
"""
|
499 |
+
Whether to include bias and weight parameters for the layer norms.
|
500 |
+
This only affects layer norms that are immediately followed by a linear layer in the forward pass,
|
501 |
+
so everything except QK-norms. To turn off affines for QK norms as well, set :attr:`attention_layer_norm_with_affine`
|
502 |
+
to ``False``.
|
503 |
+
"""
|
504 |
+
|
505 |
+
layer_norm_eps: Optional[float] = None
|
506 |
+
|
507 |
+
attention_layer_norm_with_affine: bool = True
|
508 |
+
"""
|
509 |
+
Toggle affine transform for the QK norms.
|
510 |
+
"""
|
511 |
+
|
512 |
+
max_sequence_length: int = 1024
|
513 |
+
"""
|
514 |
+
The maximum input sequence length supported by the model.
|
515 |
+
"""
|
516 |
+
|
517 |
+
max_position_embeddings: Optional[int] = None
|
518 |
+
|
519 |
+
include_bias: bool = True
|
520 |
+
"""
|
521 |
+
Whether or not to include bias parameters in linear layers.
|
522 |
+
In PaLM, they got rid of all bias terms because they found that large
|
523 |
+
models tend to have near 0 bias terms anyway.
|
524 |
+
"""
|
525 |
+
|
526 |
+
bias_for_layer_norm: Optional[bool] = None
|
527 |
+
"""
|
528 |
+
Whether or not to include bias parameters in layer norm.
|
529 |
+
This is separate from the include_bias parameter, because of a ROCm crash when biases are disabled in
|
530 |
+
layer norm.
|
531 |
+
When this is None (the default), it inherits the setting from include_bias.
|
532 |
+
"""
|
533 |
+
|
534 |
+
scale_logits: bool = False
|
535 |
+
"""
|
536 |
+
If ``True``, scale the output logits by ``1 / sqrt(d_model)``.
|
537 |
+
"""
|
538 |
+
|
539 |
+
vocab_size: int = 50257
|
540 |
+
"""
|
541 |
+
Vocabulary size of the model.
|
542 |
+
"""
|
543 |
+
|
544 |
+
embedding_size: Optional[int] = 50304
|
545 |
+
"""
|
546 |
+
The number of embeddings, i.e. the number of tokens. If set to ``None`` it will default
|
547 |
+
to ``vocab_size``. If ``vocab_size`` is not a multiple of 128, setting this to the
|
548 |
+
next multiple of 128 that's greater than ``vocab_size`` can improve throughput
|
549 |
+
substantially.
|
550 |
+
"""
|
551 |
+
|
552 |
+
# For new special tokens
|
553 |
+
additional_vocab_size: Optional[int] = None
|
554 |
+
|
555 |
+
new_embedding_init_range: float = 0.02
|
556 |
+
"""
|
557 |
+
How to initialize embedding for new
|
558 |
+
"""
|
559 |
+
|
560 |
+
weight_tying: bool = True
|
561 |
+
"""
|
562 |
+
Whether to tie output linear weights to the input embedding.
|
563 |
+
"""
|
564 |
+
|
565 |
+
pad_token_id: int = -1
|
566 |
+
"""
|
567 |
+
The ID of the token to use for padding. Defaults to the ID of the EOS token.
|
568 |
+
"""
|
569 |
+
|
570 |
+
init_device: Optional[str] = None
|
571 |
+
"""
|
572 |
+
The torch device to use when initializing the model parameters, e.g. "cpu", "cuda:0", "meta".
|
573 |
+
"""
|
574 |
+
|
575 |
+
init_fn: InitFnType = InitFnType.normal
|
576 |
+
"""
|
577 |
+
The weight initialization strategy.
|
578 |
+
"""
|
579 |
+
|
580 |
+
init_std: float = 0.02
|
581 |
+
"""
|
582 |
+
The standard deviation to use when initializing weights with a "fixed distribution" ``init_fn``, such
|
583 |
+
as "normal".
|
584 |
+
"""
|
585 |
+
|
586 |
+
init_cutoff_factor: Optional[float] = None
|
587 |
+
"""
|
588 |
+
A positive factor used to scale the cutoff values when initializing weights with a "fixed distribution" ``init_fn``, such
|
589 |
+
as "normal". Setting this to None means values are not cutoff.
|
590 |
+
"""
|
591 |
+
|
592 |
+
norm_after: bool = False
|
593 |
+
"""
|
594 |
+
Apply norm after the attention/feedforward layers rather than before, as introduced in the Swin transformer paper (Liu et al).
|
595 |
+
"""
|
596 |
+
|
597 |
+
precision: Optional[str] = None
|
598 |
+
"""
|
599 |
+
Precision used to train/evaluate with. You shouldn't set this directly.
|
600 |
+
See :data:`TrainConfig.precision` instead.
|
601 |
+
"""
|
602 |
+
|
603 |
+
moe_num_experts: Optional[int] = 8
|
604 |
+
"""
|
605 |
+
The number of experts to use in the MoE block.
|
606 |
+
"""
|
607 |
+
|
608 |
+
moe_top_k: Optional[int] = 2
|
609 |
+
"""
|
610 |
+
The number of experts to select for each token.
|
611 |
+
"""
|
612 |
+
|
613 |
+
moe_mlp_impl: Optional[str] = "sparse"
|
614 |
+
"""
|
615 |
+
Choose "grouped" for grouped GEMM installable via `pip install git+https://[email protected]/tgale96/grouped_gemm.git@66c7195e35e8c4f22fa6a014037ef511bfa397cb`.
|
616 |
+
"""
|
617 |
+
|
618 |
+
moe_log_expert_assignment: Optional[bool] = False
|
619 |
+
"""
|
620 |
+
Whether to log the expert assignment.
|
621 |
+
"""
|
622 |
+
|
623 |
+
moe_shared_expert: Optional[bool] = False
|
624 |
+
"""
|
625 |
+
Whether to have an always-used expert like in [DeepSeekMoE](https://arxiv.org/abs/2401.06066).
|
626 |
+
"""
|
627 |
+
|
628 |
+
moe_lbl_in_fp32: Optional[bool] = False
|
629 |
+
"""
|
630 |
+
Whether to perform load balancing in FP32.
|
631 |
+
"""
|
632 |
+
|
633 |
+
moe_interleave: Optional[bool] = False
|
634 |
+
"""
|
635 |
+
Interleave sequential with MoE blocks starting with sequential.
|
636 |
+
"""
|
637 |
+
|
638 |
+
moe_loss_weight: Optional[float] = 0.1
|
639 |
+
"""
|
640 |
+
The weight to use for the MoE load balancing loss.
|
641 |
+
"""
|
642 |
+
|
643 |
+
moe_zloss_weight: Optional[float] = None
|
644 |
+
"""
|
645 |
+
Weight for MoE router z-loss where None means no router z-loss. 0.001 is a common value.
|
646 |
+
"""
|
647 |
+
|
648 |
+
moe_dropless: Optional[bool] = True
|
649 |
+
"""
|
650 |
+
Whether to use [dMoE](https://arxiv.org/abs/2211.15841).
|
651 |
+
"""
|
652 |
+
|
653 |
+
moe_capacity_factor: Optional[float] = 1.25
|
654 |
+
"""
|
655 |
+
The capacity factor to use in the MoE block. Only applies if not using dMoE.
|
656 |
+
"""
|
657 |
+
|
658 |
+
# Image pre-processing options.
|
659 |
+
max_crops: int = 12
|
660 |
+
|
661 |
+
crop_mode: str = "patchify-v2-and-resize-c2"
|
662 |
+
|
663 |
+
do_random_scale: bool = True
|
664 |
+
|
665 |
+
use_col_tokens: bool = True
|
666 |
+
|
667 |
+
# How to prompt the model
|
668 |
+
prompt_type: str = "none"
|
669 |
+
|
670 |
+
# System prompt to use
|
671 |
+
system_prompt_kind: str = "style"
|
672 |
+
|
673 |
+
# How to format messages
|
674 |
+
message_formatting: str = "none"
|
675 |
+
|
676 |
+
always_start_with_space: bool = True
|
677 |
+
|
678 |
+
prompt_override: Optional[str] = None
|
679 |
+
|
680 |
+
default_inference_len: Optional[int] = 65
|
681 |
+
|
682 |
+
overlap_margins: Tuple[int, int] = (4, 4)
|
683 |
+
|
684 |
+
image_padding_embed: Optional[ImagePaddingEmbed] = None
|
685 |
+
|
686 |
+
# What layers to get from the image encoder
|
687 |
+
vit_layers: Tuple = (-1,)
|
688 |
+
|
689 |
+
# Controls the image/language connector
|
690 |
+
image_pooling_h: int = 2
|
691 |
+
|
692 |
+
image_pooling_w: int = 2
|
693 |
+
|
694 |
+
image_pooling_2d: ImagePooling2DType = ImagePooling2DType.attention
|
695 |
+
|
696 |
+
image_projector: ImageProjectType = ImageProjectType.mlp
|
697 |
+
|
698 |
+
image_feature_dropout: float = 0.0
|
699 |
+
|
700 |
+
use_cls_feature: bool = False
|
701 |
+
|
702 |
+
fix_image_input_idx: int = 2
|
703 |
+
|
704 |
+
# Makes the model ignore the image
|
705 |
+
unconditioned: bool = False
|
706 |
+
|
707 |
+
# Use in combination with sub-sequence experts to make imags/text tokens always
|
708 |
+
# occupy particular sub-sequences of the input
|
709 |
+
pad_to: Optional[int] = None
|
710 |
+
|
711 |
+
# LLM Transformer settings
|
712 |
+
initializer_range: float = 0.02
|
713 |
+
|
714 |
+
pad_tokenizer: bool = False
|
715 |
+
|
716 |
+
normalize_input_embeds: bool = False
|
717 |
+
|
718 |
+
use_position_ids: bool = True
|
719 |
+
"""
|
720 |
+
Whether to use position IDs in the model.
|
721 |
+
The model operation regarding positional embeddings changes depending on this variable.
|
722 |
+
"""
|
723 |
+
|
724 |
+
query_pre_attn_scalar: int = 224
|
725 |
+
"""
|
726 |
+
Scalar to apply to the queries before attention.
|
727 |
+
Used for Gemma-2.
|
728 |
+
"""
|
729 |
+
|
730 |
+
attn_logit_softcapping: Optional[float] = None
|
731 |
+
"""
|
732 |
+
Softcap the logits in the attention mechanism.
|
733 |
+
Used for Gemma-2.
|
734 |
+
"""
|
735 |
+
|
736 |
+
final_logit_softcapping: Optional[float] = None
|
737 |
+
"""
|
738 |
+
Softcap the final logits.
|
739 |
+
Used for Gemma-2.
|
740 |
+
"""
|
741 |
+
|
742 |
+
head_dim: Optional[int] = None
|
743 |
+
"""
|
744 |
+
The head dimensionality for the attention mechanism.
|
745 |
+
Used for Gemma-2.
|
746 |
+
"""
|
747 |
+
|
748 |
+
tokenizer: TokenizerConfig = field(default_factory=TokenizerConfig)
|
749 |
+
"""
|
750 |
+
Tokenizer configuration.
|
751 |
+
"""
|
752 |
+
|
753 |
+
loss_token_weighting: Optional[str] = None
|
754 |
+
|
755 |
+
gin_bindings: Optional[str] = None
|
756 |
+
|
757 |
+
def get_tokenizer(self):
|
758 |
+
tokenizer_cfg = self.tokenizer
|
759 |
+
assert tokenizer_cfg.identifier.startswith("mm:")
|
760 |
+
kargs = {}
|
761 |
+
if tokenizer_cfg.identifier[3:].startswith("olmo-"):
|
762 |
+
kargs["olmo_bos_token_id"] = tokenizer_cfg.olmo_bos_token_id
|
763 |
+
kargs["olmo_eos_token_id"] = tokenizer_cfg.olmo_eos_token_id
|
764 |
+
return build_tokenizer(
|
765 |
+
tokenizer_cfg.identifier[3:],
|
766 |
+
adds_space=tokenizer_cfg.tokenizer_adds_space,
|
767 |
+
tokenizer_dir=tokenizer_cfg.tokenizer_dir,
|
768 |
+
pad_tokenizer_to=self.vocab_size if self.pad_tokenizer else None,
|
769 |
+
**kargs
|
770 |
+
)
|
771 |
+
|
772 |
+
def get_preprocessor(self):
|
773 |
+
vision_cfg = self.vision_backbone
|
774 |
+
h, w = self.llm_patches_per_crop()
|
775 |
+
|
776 |
+
return MultiModalPreprocessor(
|
777 |
+
loss_token_weighting=self.loss_token_weighting,
|
778 |
+
always_start_with_space=self.always_start_with_space,
|
779 |
+
tokenizer=self.get_tokenizer(),
|
780 |
+
prompt_override=self.prompt_override,
|
781 |
+
fix_image_input_idx=self.fix_image_input_idx,
|
782 |
+
prompt_templates=self.prompt_type,
|
783 |
+
system_prompt=self.system_prompt_kind,
|
784 |
+
default_inference_len=self.default_inference_len,
|
785 |
+
message_format=self.message_formatting,
|
786 |
+
unconditioned=self.unconditioned,
|
787 |
+
crop_mode=self.crop_mode,
|
788 |
+
max_crops=self.max_crops,
|
789 |
+
do_random_scale=self.do_random_scale,
|
790 |
+
base_image_input_size=vision_cfg.image_default_input_size,
|
791 |
+
image_patch_size=vision_cfg.image_patch_size,
|
792 |
+
image_token_length_h=h,
|
793 |
+
image_token_length_w=w,
|
794 |
+
use_col_tokens=self.use_col_tokens,
|
795 |
+
overlap_margins=self.overlap_margins,
|
796 |
+
image_padding_mask=self.image_padding_embed is not None
|
797 |
)
|
798 |
|
799 |
+
def __post_init__(self):
|
800 |
+
self.vit_layers = tuple(self.vit_layers) # type: ignore[assignment]
|
801 |
+
|
802 |
+
@classmethod
|
803 |
+
def update_legacy_settings(cls, config: D) -> D:
|
804 |
+
"""
|
805 |
+
Update the legacy config settings whose schemas have undergone backwards-incompatible changes.
|
806 |
+
"""
|
807 |
+
if "flash_attention" in config:
|
808 |
+
is_flash = config.flash_attention
|
809 |
+
del config.flash_attention
|
810 |
+
config.attention_type = AttentionType.flash if is_flash else AttentionType.sdpa
|
811 |
+
|
812 |
+
if "bos_token_id" in config:
|
813 |
+
config.tokenizer.olmo_bos_token_id = config.pop("bos_token_id")
|
814 |
+
config.tokenizer.olmo_eos_token_id = config.pop("eos_token_id")
|
815 |
+
|
816 |
+
if "image_padding_mask" in config:
|
817 |
+
assert not config["image_padding_mask"]
|
818 |
+
del config["image_padding_mask"]
|
819 |
+
config["image_padding_embed"] = None
|
820 |
+
elif "image_padding_embed" not in config:
|
821 |
+
config["image_padding_embed"] = None
|
822 |
+
return config
|
823 |
+
|
824 |
+
@property
|
825 |
+
def effective_n_kv_heads(self) -> int:
|
826 |
+
if self.n_kv_heads is None:
|
827 |
+
if self.multi_query_attention is True:
|
828 |
+
return 1
|
829 |
+
else:
|
830 |
+
return self.n_heads
|
831 |
+
else:
|
832 |
+
if self.multi_query_attention is None:
|
833 |
+
return self.n_kv_heads
|
834 |
+
if self.multi_query_attention:
|
835 |
+
n_kv_heads_should_be = 1
|
836 |
+
else:
|
837 |
+
n_kv_heads_should_be = self.n_heads
|
838 |
+
if self.n_kv_heads == n_kv_heads_should_be:
|
839 |
+
return n_kv_heads_should_be
|
840 |
+
else:
|
841 |
+
raise OLMoConfigurationError(
|
842 |
+
"You can't set `multi_query_attention` and `n_kv_heads` at the same time."
|
843 |
+
)
|
844 |
+
|
845 |
+
@property
|
846 |
+
def image_num_patch(self):
|
847 |
+
assert self.vision_backbone is not None
|
848 |
+
return self.vision_backbone.image_num_patch
|
849 |
+
|
850 |
+
@property
|
851 |
+
def image_patch_size(self):
|
852 |
+
assert self.vision_backbone is not None
|
853 |
+
return self.visoin_backbone.image_patch_size
|
854 |
+
|
855 |
+
def llm_patches_per_crop(self):
|
856 |
+
h, w = self.image_num_patch
|
857 |
+
# Round up in case we need to pad the image features for pooling
|
858 |
+
h = (h + self.image_pooling_h - 1) // self.image_pooling_h
|
859 |
+
w = (w + self.image_pooling_w - 1) // self.image_pooling_w
|
860 |
+
return h, w
|
861 |
+
|
862 |
+
def get_max_crops(self) -> int:
|
863 |
+
"""Max numbers of that can be built for one image"""
|
864 |
+
if self.crop_mode == "resize":
|
865 |
+
return 1
|
866 |
+
elif "resize" in self.crop_mode:
|
867 |
+
return 1 + self.max_crops
|
868 |
+
else:
|
869 |
+
return self.max_crops
|
870 |
+
|
871 |
+
|
872 |
+
class MolmoConfig(PretrainedConfig):
|
873 |
+
model_type = "molmo"
|
874 |
+
keys_to_ignore_at_inference = ["past_key_values"] # TODO: confirm
|
875 |
+
|
876 |
+
def __init__(self, use_cache: bool = False, **kwargs):
|
877 |
+
model_config = ModelConfig()
|
878 |
+
all_kwargs = model_config.asdict()
|
879 |
+
all_kwargs.update(kwargs)
|
880 |
+
all_kwargs.update({"use_cache": use_cache})
|
881 |
+
all_kwargs.update(
|
882 |
+
{"architectures": all_kwargs.get("architectures", ["OLMoForCausalLM"]) or ["OLMoForCausalLM"]}
|
883 |
+
)
|
884 |
+
super().__init__(**all_kwargs)
|
885 |
+
|
886 |
+
@property
|
887 |
+
def num_attention_heads(self):
|
888 |
+
return self.n_heads
|
889 |
+
|
890 |
+
@property
|
891 |
+
def num_hidden_layers(self):
|
892 |
+
return self.n_layers
|
893 |
+
|
894 |
+
@property
|
895 |
+
def hidden_size(self):
|
896 |
+
return self.d_model
|
897 |
+
|
898 |
+
@property
|
899 |
+
def image_num_patch(self):
|
900 |
+
assert self.vision_backbone is not None
|
901 |
+
return self.vision_backbone.image_num_patch
|
902 |
+
|
903 |
+
@property
|
904 |
+
def llm_patches_per_crop(self):
|
905 |
+
h, w = self.image_num_patch
|
906 |
+
# Round up in case we need to pad the image features for pooling
|
907 |
+
h = (h + self.image_pooling_h - 1) // self.image_pooling_h
|
908 |
+
w = (w + self.image_pooling_w - 1) // self.image_pooling_w
|
909 |
+
return h, w
|
modeling_molmoe.py
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2030e3d4bff2052c9dbe44d592e2929d451bbbdf098524b65f71893a85c51df
|
3 |
+
size 28888362419
|
util.py
ADDED
@@ -0,0 +1,785 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
import socket
|
6 |
+
import sys
|
7 |
+
import time
|
8 |
+
import warnings
|
9 |
+
from datetime import datetime
|
10 |
+
from enum import Enum
|
11 |
+
from itertools import cycle, islice
|
12 |
+
from pathlib import Path
|
13 |
+
from queue import Queue
|
14 |
+
from threading import Thread
|
15 |
+
from typing import Any, Callable, Dict, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import boto3
|
18 |
+
import botocore.exceptions as boto_exceptions
|
19 |
+
import rich
|
20 |
+
from botocore.config import Config
|
21 |
+
from cached_path.schemes import SchemeClient, add_scheme_client
|
22 |
+
from rich.console import Console, ConsoleRenderable
|
23 |
+
from rich.highlighter import NullHighlighter
|
24 |
+
from rich.progress import Progress
|
25 |
+
from rich.text import Text
|
26 |
+
from rich.traceback import Traceback
|
27 |
+
|
28 |
+
from .aliases import PathOrStr
|
29 |
+
from .exceptions import (
|
30 |
+
OLMoCliError,
|
31 |
+
OLMoEnvironmentError,
|
32 |
+
OLMoError,
|
33 |
+
OLMoNetworkError,
|
34 |
+
OLMoThreadError,
|
35 |
+
)
|
36 |
+
from .torch_util import get_global_rank, get_local_rank, get_node_rank, is_distributed
|
37 |
+
|
38 |
+
try:
|
39 |
+
from functools import cache
|
40 |
+
except ImportError:
|
41 |
+
from functools import lru_cache as cache
|
42 |
+
|
43 |
+
|
44 |
+
class StrEnum(str, Enum):
|
45 |
+
"""
|
46 |
+
This is equivalent to Python's :class:`enum.StrEnum` since version 3.11.
|
47 |
+
We include this here for compatibility with older version of Python.
|
48 |
+
"""
|
49 |
+
|
50 |
+
def __str__(self) -> str:
|
51 |
+
return self.value
|
52 |
+
|
53 |
+
def __repr__(self) -> str:
|
54 |
+
return f"'{str(self)}'"
|
55 |
+
|
56 |
+
|
57 |
+
_log_extra_fields: Dict[str, Any] = {}
|
58 |
+
log = logging.getLogger(__name__)
|
59 |
+
|
60 |
+
|
61 |
+
class LogFilterType(StrEnum):
|
62 |
+
rank0_only = "rank0_only"
|
63 |
+
local_rank0_only = "local_rank0_only"
|
64 |
+
all_ranks = "all_ranks"
|
65 |
+
|
66 |
+
|
67 |
+
def log_extra_field(field_name: str, field_value: Any) -> None:
|
68 |
+
global _log_extra_fields
|
69 |
+
if field_value is None:
|
70 |
+
if field_name in _log_extra_fields:
|
71 |
+
del _log_extra_fields[field_name]
|
72 |
+
else:
|
73 |
+
_log_extra_fields[field_name] = field_value
|
74 |
+
|
75 |
+
|
76 |
+
def setup_logging(log_filter_type: LogFilterType = LogFilterType.rank0_only) -> None:
|
77 |
+
"""
|
78 |
+
:param rank0_only: INFO and below messages will only be emitted on the rank0 process.
|
79 |
+
"""
|
80 |
+
log_extra_field("hostname", socket.gethostname())
|
81 |
+
if is_distributed():
|
82 |
+
log_extra_field("node_rank", get_node_rank())
|
83 |
+
log_extra_field("local_rank", get_local_rank())
|
84 |
+
log_extra_field("global_rank", get_global_rank())
|
85 |
+
else:
|
86 |
+
log_extra_field("node_rank", 0)
|
87 |
+
log_extra_field("local_rank", 0)
|
88 |
+
log_extra_field("global_rank", 0)
|
89 |
+
|
90 |
+
old_log_record_factory = logging.getLogRecordFactory()
|
91 |
+
|
92 |
+
def log_record_factory(*args, **kwargs) -> logging.LogRecord:
|
93 |
+
record = old_log_record_factory(*args, **kwargs)
|
94 |
+
for field_name, field_value in _log_extra_fields.items():
|
95 |
+
setattr(record, field_name, field_value)
|
96 |
+
return record
|
97 |
+
|
98 |
+
logging.setLogRecordFactory(log_record_factory)
|
99 |
+
|
100 |
+
handler: logging.Handler
|
101 |
+
if (
|
102 |
+
os.environ.get("OLMo_NONINTERACTIVE", False)
|
103 |
+
or os.environ.get("DEBIAN_FRONTEND", None) == "noninteractive"
|
104 |
+
or not sys.stdout.isatty()
|
105 |
+
):
|
106 |
+
handler = logging.StreamHandler(sys.stdout)
|
107 |
+
formatter = logging.Formatter(
|
108 |
+
"%(asctime)s\t%(hostname)s:%(local_rank)s\t%(name)s:%(lineno)s\t%(levelname)s\t%(message)s"
|
109 |
+
)
|
110 |
+
formatter.default_time_format = "%Y-%m-%d %H:%M:%S"
|
111 |
+
formatter.default_msec_format = "%s.%03d"
|
112 |
+
handler.setFormatter(formatter)
|
113 |
+
else:
|
114 |
+
handler = RichHandler()
|
115 |
+
|
116 |
+
def rank0_filter(record: logging.LogRecord) -> int:
|
117 |
+
if record.levelno > logging.INFO:
|
118 |
+
return 1
|
119 |
+
if getattr(record, "global_rank", 0) == 0:
|
120 |
+
return 1
|
121 |
+
else:
|
122 |
+
return 0
|
123 |
+
|
124 |
+
def local_rank0_filter(record: logging.LogRecord) -> int:
|
125 |
+
if record.levelno > logging.INFO:
|
126 |
+
return 1
|
127 |
+
if getattr(record, "local_rank", 0) == 0:
|
128 |
+
return 1
|
129 |
+
else:
|
130 |
+
return 0
|
131 |
+
|
132 |
+
if log_filter_type == LogFilterType.rank0_only:
|
133 |
+
filter = rank0_filter
|
134 |
+
elif log_filter_type == LogFilterType.local_rank0_only:
|
135 |
+
filter = local_rank0_filter # type: ignore
|
136 |
+
elif log_filter_type == LogFilterType.all_ranks:
|
137 |
+
filter = None
|
138 |
+
else:
|
139 |
+
raise ValueError(log_filter_type)
|
140 |
+
|
141 |
+
if filter is not None:
|
142 |
+
handler.addFilter(filter) # type: ignore
|
143 |
+
logging.basicConfig(handlers=[handler], level=logging.INFO)
|
144 |
+
|
145 |
+
logging.captureWarnings(True)
|
146 |
+
logging.getLogger("urllib3").setLevel(logging.ERROR)
|
147 |
+
|
148 |
+
|
149 |
+
def excepthook(exctype, value, traceback):
|
150 |
+
"""
|
151 |
+
Used to patch `sys.excepthook` in order to log exceptions.
|
152 |
+
"""
|
153 |
+
if issubclass(exctype, KeyboardInterrupt):
|
154 |
+
sys.__excepthook__(exctype, value, traceback)
|
155 |
+
elif issubclass(exctype, OLMoCliError):
|
156 |
+
rich.get_console().print(f"[yellow]{value}[/]", highlight=False)
|
157 |
+
elif issubclass(exctype, OLMoError):
|
158 |
+
rich.get_console().print(Text(f"{exctype.__name__}:", style="red"), value, highlight=False)
|
159 |
+
else:
|
160 |
+
log.critical("Uncaught %s: %s", exctype.__name__, value, exc_info=(exctype, value, traceback))
|
161 |
+
|
162 |
+
|
163 |
+
def install_excepthook():
|
164 |
+
sys.excepthook = excepthook
|
165 |
+
|
166 |
+
|
167 |
+
def filter_warnings():
|
168 |
+
# Filter internal deprecation warnings from torch
|
169 |
+
warnings.filterwarnings(
|
170 |
+
action="ignore",
|
171 |
+
category=UserWarning,
|
172 |
+
message="torch.distributed.*_base is a private function and will be deprecated.*",
|
173 |
+
)
|
174 |
+
warnings.filterwarnings(
|
175 |
+
action="ignore",
|
176 |
+
category=UserWarning,
|
177 |
+
message="TypedStorage is deprecated.*",
|
178 |
+
)
|
179 |
+
warnings.filterwarnings(
|
180 |
+
action="ignore",
|
181 |
+
category=UserWarning,
|
182 |
+
message="Please use DTensor instead.*",
|
183 |
+
)
|
184 |
+
# Torchvision warnings. We don't actually use torchvision.
|
185 |
+
warnings.filterwarnings(
|
186 |
+
action="ignore",
|
187 |
+
message="failed to load.*",
|
188 |
+
module="torchvision.io.image",
|
189 |
+
)
|
190 |
+
|
191 |
+
|
192 |
+
def set_env_variables():
|
193 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
194 |
+
|
195 |
+
|
196 |
+
def prepare_cli_environment(log_filter_type: Optional[LogFilterType] = None):
|
197 |
+
if log_filter_type is None:
|
198 |
+
log_filter_type = LogFilterType(os.environ.get("LOG_FILTER_TYPE", "rank0_only"))
|
199 |
+
rich.reconfigure(width=max(rich.get_console().width, 180), soft_wrap=True)
|
200 |
+
setup_logging(log_filter_type=log_filter_type)
|
201 |
+
install_excepthook()
|
202 |
+
filter_warnings()
|
203 |
+
set_env_variables()
|
204 |
+
|
205 |
+
|
206 |
+
def clean_opt(arg: str) -> str:
|
207 |
+
if "=" not in arg:
|
208 |
+
arg = f"{arg}=True"
|
209 |
+
name, val = arg.split("=", 1)
|
210 |
+
name = name.strip("-").replace("-", "_")
|
211 |
+
return f"{name}={val}"
|
212 |
+
|
213 |
+
|
214 |
+
class RichHandler(logging.Handler):
|
215 |
+
"""
|
216 |
+
A simplified version of rich.logging.RichHandler from
|
217 |
+
https://github.com/Textualize/rich/blob/master/rich/logging.py
|
218 |
+
"""
|
219 |
+
|
220 |
+
def __init__(
|
221 |
+
self,
|
222 |
+
*,
|
223 |
+
level: Union[int, str] = logging.NOTSET,
|
224 |
+
console: Optional[Console] = None,
|
225 |
+
markup: bool = False,
|
226 |
+
) -> None:
|
227 |
+
super().__init__(level=level)
|
228 |
+
self.console = console or rich.get_console()
|
229 |
+
self.highlighter = NullHighlighter()
|
230 |
+
self.markup = markup
|
231 |
+
|
232 |
+
def emit(self, record: logging.LogRecord) -> None:
|
233 |
+
try:
|
234 |
+
if hasattr(record.msg, "__rich__") or hasattr(record.msg, "__rich_console__"):
|
235 |
+
self.console.print(record.msg)
|
236 |
+
else:
|
237 |
+
msg: Any = record.msg
|
238 |
+
if isinstance(record.msg, str):
|
239 |
+
msg = self.render_message(record=record, message=record.getMessage())
|
240 |
+
renderables = [
|
241 |
+
self.get_time_text(record),
|
242 |
+
self.get_level_text(record),
|
243 |
+
self.get_location_text(record),
|
244 |
+
msg,
|
245 |
+
]
|
246 |
+
if record.exc_info is not None:
|
247 |
+
tb = Traceback.from_exception(*record.exc_info) # type: ignore
|
248 |
+
renderables.append(tb)
|
249 |
+
self.console.print(*renderables)
|
250 |
+
except Exception:
|
251 |
+
self.handleError(record)
|
252 |
+
|
253 |
+
def render_message(self, *, record: logging.LogRecord, message: str) -> ConsoleRenderable:
|
254 |
+
use_markup = getattr(record, "markup", self.markup)
|
255 |
+
message_text = Text.from_markup(message) if use_markup else Text(message)
|
256 |
+
|
257 |
+
highlighter = getattr(record, "highlighter", self.highlighter)
|
258 |
+
if highlighter:
|
259 |
+
message_text = highlighter(message_text)
|
260 |
+
|
261 |
+
return message_text
|
262 |
+
|
263 |
+
def get_time_text(self, record: logging.LogRecord) -> Text:
|
264 |
+
log_time = datetime.fromtimestamp(record.created)
|
265 |
+
time_str = log_time.strftime("[%Y-%m-%d %X]")
|
266 |
+
return Text(time_str, style="log.time", end=" ")
|
267 |
+
|
268 |
+
def get_level_text(self, record: logging.LogRecord) -> Text:
|
269 |
+
level_name = record.levelname
|
270 |
+
level_text = Text.styled(level_name.ljust(8), f"logging.level.{level_name.lower()}")
|
271 |
+
level_text.style = "log.level"
|
272 |
+
level_text.end = " "
|
273 |
+
return level_text
|
274 |
+
|
275 |
+
def get_location_text(self, record: logging.LogRecord) -> Text:
|
276 |
+
name_and_line = f"{record.name}:{record.lineno}" if record.name != "root" else "root"
|
277 |
+
text = f"[{name_and_line}, rank={record.local_rank}]" # type: ignore
|
278 |
+
return Text(text, style="log.path")
|
279 |
+
|
280 |
+
|
281 |
+
def wait_for(condition: Callable[[], bool], description: str, timeout: float = 10.0):
|
282 |
+
"""Wait for the condition function to return True."""
|
283 |
+
start_time = time.monotonic()
|
284 |
+
while not condition():
|
285 |
+
time.sleep(0.5)
|
286 |
+
if time.monotonic() - start_time > timeout:
|
287 |
+
raise TimeoutError(f"{description} timed out")
|
288 |
+
|
289 |
+
|
290 |
+
def is_url(path: PathOrStr) -> bool:
|
291 |
+
return re.match(r"[a-z0-9]+://.*", str(path)) is not None
|
292 |
+
|
293 |
+
|
294 |
+
def dir_is_empty(dir: PathOrStr) -> bool:
|
295 |
+
dir = Path(dir)
|
296 |
+
if not dir.is_dir():
|
297 |
+
return True
|
298 |
+
try:
|
299 |
+
next(dir.glob("*"))
|
300 |
+
return False
|
301 |
+
except StopIteration:
|
302 |
+
return True
|
303 |
+
|
304 |
+
|
305 |
+
def get_progress_bar() -> Progress:
|
306 |
+
from cached_path import get_download_progress
|
307 |
+
|
308 |
+
return get_download_progress()
|
309 |
+
|
310 |
+
|
311 |
+
def resource_path(
|
312 |
+
folder: PathOrStr, fname: str, local_cache: Optional[PathOrStr] = None, progress: Optional[Progress] = None
|
313 |
+
) -> Path:
|
314 |
+
if local_cache is not None and (local_path := Path(local_cache) / fname).is_file():
|
315 |
+
log.info(f"Found local cache of {fname} at {local_path}")
|
316 |
+
return local_path
|
317 |
+
else:
|
318 |
+
from cached_path import cached_path
|
319 |
+
|
320 |
+
return cached_path(f"{str(folder).rstrip('/')}/{fname}", progress=progress)
|
321 |
+
|
322 |
+
|
323 |
+
def file_size(path: PathOrStr) -> int:
|
324 |
+
"""
|
325 |
+
Get the size of a local or remote file in bytes.
|
326 |
+
"""
|
327 |
+
if is_url(path):
|
328 |
+
from urllib.parse import urlparse
|
329 |
+
|
330 |
+
parsed = urlparse(str(path))
|
331 |
+
if parsed.scheme == "gs":
|
332 |
+
return _gcs_file_size(parsed.netloc, parsed.path.strip("/"))
|
333 |
+
elif parsed.scheme in ("s3", "r2", "weka"):
|
334 |
+
return _s3_file_size(parsed.scheme, parsed.netloc, parsed.path.strip("/"))
|
335 |
+
elif parsed.scheme in ("http", "https"):
|
336 |
+
return _http_file_size(parsed.scheme, parsed.netloc, parsed.path.strip("/"))
|
337 |
+
elif parsed.scheme == "file":
|
338 |
+
return file_size(str(path).replace("file://", "", 1))
|
339 |
+
else:
|
340 |
+
raise NotImplementedError(f"file size not implemented for '{parsed.scheme}' files")
|
341 |
+
else:
|
342 |
+
return os.stat(path).st_size
|
343 |
+
|
344 |
+
|
345 |
+
def upload(source: PathOrStr, target: str, save_overwrite: bool = False):
|
346 |
+
"""Upload source file to a target location on GCS or S3."""
|
347 |
+
from urllib.parse import urlparse
|
348 |
+
|
349 |
+
source = Path(source)
|
350 |
+
assert source.is_file()
|
351 |
+
parsed = urlparse(target)
|
352 |
+
if parsed.scheme == "gs":
|
353 |
+
_gcs_upload(source, parsed.netloc, parsed.path.strip("/"), save_overwrite=save_overwrite)
|
354 |
+
elif parsed.scheme in ("s3", "r2", "weka"):
|
355 |
+
_s3_upload(source, parsed.scheme, parsed.netloc, parsed.path.strip("/"), save_overwrite=save_overwrite)
|
356 |
+
else:
|
357 |
+
raise NotImplementedError(f"Upload not implemented for '{parsed.scheme}' scheme")
|
358 |
+
|
359 |
+
|
360 |
+
def get_bytes_range(source: PathOrStr, bytes_start: int, num_bytes: int) -> bytes:
|
361 |
+
if is_url(source):
|
362 |
+
from urllib.parse import urlparse
|
363 |
+
|
364 |
+
parsed = urlparse(str(source))
|
365 |
+
if parsed.scheme == "gs":
|
366 |
+
return _gcs_get_bytes_range(parsed.netloc, parsed.path.strip("/"), bytes_start, num_bytes)
|
367 |
+
elif parsed.scheme in ("s3", "r2", "weka"):
|
368 |
+
return _s3_get_bytes_range(
|
369 |
+
parsed.scheme, parsed.netloc, parsed.path.strip("/"), bytes_start, num_bytes
|
370 |
+
)
|
371 |
+
elif parsed.scheme in ("http", "https"):
|
372 |
+
return _http_get_bytes_range(
|
373 |
+
parsed.scheme, parsed.netloc, parsed.path.strip("/"), bytes_start, num_bytes
|
374 |
+
)
|
375 |
+
elif parsed.scheme == "file":
|
376 |
+
return get_bytes_range(str(source).replace("file://", "", 1), bytes_start, num_bytes)
|
377 |
+
else:
|
378 |
+
raise NotImplementedError(f"get bytes range not implemented for '{parsed.scheme}' files")
|
379 |
+
else:
|
380 |
+
with open(source, "rb") as f:
|
381 |
+
f.seek(bytes_start)
|
382 |
+
return f.read(num_bytes)
|
383 |
+
|
384 |
+
|
385 |
+
def find_latest_checkpoint(dir: PathOrStr) -> Optional[PathOrStr]:
|
386 |
+
if is_url(dir):
|
387 |
+
from urllib.parse import urlparse
|
388 |
+
|
389 |
+
parsed = urlparse(str(dir))
|
390 |
+
if parsed.scheme == "gs":
|
391 |
+
raise NotImplementedError
|
392 |
+
elif parsed.scheme in ("s3", "r2", "weka"):
|
393 |
+
return _s3_find_latest_checkpoint(parsed.scheme, parsed.netloc, parsed.path.strip("/"))
|
394 |
+
elif parsed.scheme == "file":
|
395 |
+
return find_latest_checkpoint(str(dir).replace("file://", "", 1))
|
396 |
+
else:
|
397 |
+
raise NotImplementedError(f"find_latest_checkpoint not implemented for '{parsed.scheme}' files")
|
398 |
+
else:
|
399 |
+
latest_step = 0
|
400 |
+
latest_checkpoint: Optional[Path] = None
|
401 |
+
for path in Path(dir).glob("step*"):
|
402 |
+
if path.is_dir():
|
403 |
+
try:
|
404 |
+
step = int(path.name.replace("step", "").replace("-unsharded", ""))
|
405 |
+
except ValueError:
|
406 |
+
continue
|
407 |
+
# We prioritize sharded checkpoints over unsharded checkpoints.
|
408 |
+
if step > latest_step or (step == latest_step and not path.name.endswith("-unsharded")):
|
409 |
+
latest_step = step
|
410 |
+
latest_checkpoint = path
|
411 |
+
return latest_checkpoint
|
412 |
+
|
413 |
+
|
414 |
+
def _gcs_upload(source: Path, bucket_name: str, key: str, save_overwrite: bool = False):
|
415 |
+
from google.cloud import storage as gcs
|
416 |
+
|
417 |
+
storage_client = gcs.Client()
|
418 |
+
bucket = storage_client.bucket(bucket_name)
|
419 |
+
blob = bucket.blob(key)
|
420 |
+
if not save_overwrite and blob.exists():
|
421 |
+
raise FileExistsError(f"gs://{bucket_name}/{key} already exists. Use save_overwrite to overwrite it.")
|
422 |
+
blob.upload_from_filename(source)
|
423 |
+
|
424 |
+
|
425 |
+
def _gcs_file_size(bucket_name: str, key: str) -> int:
|
426 |
+
from google.api_core.exceptions import NotFound
|
427 |
+
from google.cloud import storage as gcs
|
428 |
+
|
429 |
+
storage_client = gcs.Client()
|
430 |
+
bucket = storage_client.bucket(bucket_name)
|
431 |
+
blob = bucket.blob(key)
|
432 |
+
try:
|
433 |
+
blob.reload()
|
434 |
+
except NotFound:
|
435 |
+
raise FileNotFoundError(f"gs://{bucket_name}/{key}")
|
436 |
+
assert blob.size is not None
|
437 |
+
return blob.size
|
438 |
+
|
439 |
+
|
440 |
+
def _gcs_get_bytes_range(bucket_name: str, key: str, bytes_start: int, num_bytes: int) -> bytes:
|
441 |
+
from google.api_core.exceptions import NotFound
|
442 |
+
from google.cloud import storage as gcs
|
443 |
+
|
444 |
+
storage_client = gcs.Client()
|
445 |
+
bucket = storage_client.bucket(bucket_name)
|
446 |
+
blob = bucket.blob(key)
|
447 |
+
try:
|
448 |
+
blob.reload()
|
449 |
+
except NotFound:
|
450 |
+
raise FileNotFoundError(f"gs://{bucket_name}/{key}")
|
451 |
+
return blob.download_as_bytes(start=bytes_start, end=bytes_start + num_bytes - 1)
|
452 |
+
|
453 |
+
|
454 |
+
def _get_s3_profile_name(scheme: str) -> Optional[str]:
|
455 |
+
if scheme == "s3":
|
456 |
+
# For backwards compatibility, we assume S3 uses the default profile if S3_PROFILE is not set.
|
457 |
+
return os.environ.get("S3_PROFILE")
|
458 |
+
if scheme == "r2":
|
459 |
+
profile_name = os.environ.get("R2_PROFILE")
|
460 |
+
if profile_name is None:
|
461 |
+
raise OLMoEnvironmentError(
|
462 |
+
"R2 profile name is not set. Did you forget to set the 'R2_PROFILE' env var?"
|
463 |
+
)
|
464 |
+
|
465 |
+
return profile_name
|
466 |
+
if scheme == "weka":
|
467 |
+
profile_name = os.environ.get("WEKA_PROFILE")
|
468 |
+
if profile_name is None:
|
469 |
+
raise OLMoEnvironmentError(
|
470 |
+
"Weka profile name is not set. Did you forget to set the 'WEKA_PROFILE' env var?"
|
471 |
+
)
|
472 |
+
|
473 |
+
return profile_name
|
474 |
+
|
475 |
+
raise NotImplementedError(f"Cannot get profile name for scheme {scheme}")
|
476 |
+
|
477 |
+
|
478 |
+
def _get_s3_endpoint_url(scheme: str) -> Optional[str]:
|
479 |
+
if scheme == "s3":
|
480 |
+
return None
|
481 |
+
if scheme == "r2":
|
482 |
+
r2_endpoint_url = os.environ.get("R2_ENDPOINT_URL")
|
483 |
+
if r2_endpoint_url is None:
|
484 |
+
raise OLMoEnvironmentError(
|
485 |
+
"R2 endpoint url is not set. Did you forget to set the 'R2_ENDPOINT_URL' env var?"
|
486 |
+
)
|
487 |
+
|
488 |
+
return r2_endpoint_url
|
489 |
+
if scheme == "weka":
|
490 |
+
weka_endpoint_url = os.environ.get("WEKA_ENDPOINT_URL")
|
491 |
+
if weka_endpoint_url is None:
|
492 |
+
raise OLMoEnvironmentError(
|
493 |
+
"Weka endpoint url is not set. Did you forget to set the 'WEKA_ENDPOINT_URL' env var?"
|
494 |
+
)
|
495 |
+
|
496 |
+
return weka_endpoint_url
|
497 |
+
|
498 |
+
raise NotImplementedError(f"Cannot get endpoint url for scheme {scheme}")
|
499 |
+
|
500 |
+
|
501 |
+
@cache
|
502 |
+
def _get_s3_client(scheme: str):
|
503 |
+
session = boto3.Session(profile_name=_get_s3_profile_name(scheme))
|
504 |
+
return session.client(
|
505 |
+
"s3",
|
506 |
+
endpoint_url=_get_s3_endpoint_url(scheme),
|
507 |
+
config=Config(retries={"max_attempts": 10, "mode": "standard"}),
|
508 |
+
use_ssl=not int(os.environ.get("OLMO_NO_SSL", "0")),
|
509 |
+
)
|
510 |
+
|
511 |
+
|
512 |
+
def _wait_before_retry(attempt: int):
|
513 |
+
time.sleep(min(0.5 * 2**attempt, 3.0))
|
514 |
+
|
515 |
+
|
516 |
+
def _s3_upload(
|
517 |
+
source: Path, scheme: str, bucket_name: str, key: str, save_overwrite: bool = False, max_attempts: int = 3
|
518 |
+
):
|
519 |
+
err: Optional[Exception] = None
|
520 |
+
if not save_overwrite:
|
521 |
+
for attempt in range(1, max_attempts + 1):
|
522 |
+
try:
|
523 |
+
_get_s3_client(scheme).head_object(Bucket=bucket_name, Key=key)
|
524 |
+
raise FileExistsError(
|
525 |
+
f"s3://{bucket_name}/{key} already exists. Use save_overwrite to overwrite it."
|
526 |
+
)
|
527 |
+
except boto_exceptions.ClientError as e:
|
528 |
+
if e.response["ResponseMetadata"]["HTTPStatusCode"] == 404:
|
529 |
+
err = None
|
530 |
+
break
|
531 |
+
err = e
|
532 |
+
|
533 |
+
if attempt < max_attempts:
|
534 |
+
log.warning("%s failed attempt %d with retriable error: %s", _s3_upload.__name__, attempt, err)
|
535 |
+
_wait_before_retry(attempt)
|
536 |
+
|
537 |
+
if err is not None:
|
538 |
+
raise OLMoNetworkError(f"Failed to check object existence during {scheme} upload") from err
|
539 |
+
|
540 |
+
try:
|
541 |
+
_get_s3_client(scheme).upload_file(source, bucket_name, key)
|
542 |
+
except boto_exceptions.ClientError as e:
|
543 |
+
raise OLMoNetworkError(f"Failed to upload to {scheme}") from e
|
544 |
+
|
545 |
+
|
546 |
+
def _s3_file_size(scheme: str, bucket_name: str, key: str, max_attempts: int = 3) -> int:
|
547 |
+
err: Optional[Exception] = None
|
548 |
+
for attempt in range(1, max_attempts + 1):
|
549 |
+
try:
|
550 |
+
return _get_s3_client(scheme).head_object(Bucket=bucket_name, Key=key)["ContentLength"]
|
551 |
+
except boto_exceptions.ClientError as e:
|
552 |
+
if e.response["ResponseMetadata"]["HTTPStatusCode"] == 404:
|
553 |
+
raise FileNotFoundError(f"s3://{bucket_name}/{key}") from e
|
554 |
+
err = e
|
555 |
+
|
556 |
+
if attempt < max_attempts:
|
557 |
+
log.warning("%s failed attempt %d with retriable error: %s", _s3_file_size.__name__, attempt, err)
|
558 |
+
_wait_before_retry(attempt)
|
559 |
+
|
560 |
+
raise OLMoNetworkError(f"Failed to get {scheme} file size") from err
|
561 |
+
|
562 |
+
|
563 |
+
def _s3_get_bytes_range(
|
564 |
+
scheme: str, bucket_name: str, key: str, bytes_start: int, num_bytes: int, max_attempts: int = 3
|
565 |
+
) -> bytes:
|
566 |
+
err: Optional[Exception] = None
|
567 |
+
for attempt in range(1, max_attempts + 1):
|
568 |
+
try:
|
569 |
+
return (
|
570 |
+
_get_s3_client(scheme)
|
571 |
+
.get_object(
|
572 |
+
Bucket=bucket_name, Key=key, Range=f"bytes={bytes_start}-{bytes_start + num_bytes - 1}"
|
573 |
+
)["Body"]
|
574 |
+
.read()
|
575 |
+
)
|
576 |
+
except boto_exceptions.ClientError as e:
|
577 |
+
if e.response["ResponseMetadata"]["HTTPStatusCode"] == 404:
|
578 |
+
raise FileNotFoundError(f"{scheme}://{bucket_name}/{key}") from e
|
579 |
+
err = e
|
580 |
+
except (boto_exceptions.HTTPClientError, boto_exceptions.ConnectionError) as e:
|
581 |
+
# ResponseStreamingError (subclass of HTTPClientError) can happen as
|
582 |
+
# a result of a failed read from the stream (http.client.IncompleteRead).
|
583 |
+
# Retrying can help in this case.
|
584 |
+
err = e
|
585 |
+
|
586 |
+
if attempt < max_attempts:
|
587 |
+
log.warning(
|
588 |
+
"%s failed attempt %d with retriable error: %s", _s3_get_bytes_range.__name__, attempt, err
|
589 |
+
)
|
590 |
+
_wait_before_retry(attempt)
|
591 |
+
|
592 |
+
# When torch's DataLoader intercepts exceptions, it may try to re-raise them
|
593 |
+
# by recalling their constructor with a single message arg. Torch has some
|
594 |
+
# logic to deal with the absence of a single-parameter constructor, but it
|
595 |
+
# doesn't gracefully handle other possible failures in calling such a constructor
|
596 |
+
# This can cause an irrelevant exception (e.g. KeyError: 'error'), resulting
|
597 |
+
# in us losing the true exception info. To avoid this, we change the exception
|
598 |
+
# to a type that has a single-parameter constructor.
|
599 |
+
raise OLMoNetworkError(f"Failed to get bytes range from {scheme}") from err
|
600 |
+
|
601 |
+
|
602 |
+
def _s3_find_latest_checkpoint(scheme: str, bucket_name: str, prefix: str) -> Optional[str]:
|
603 |
+
if not prefix.endswith("/"):
|
604 |
+
prefix = f"{prefix}/"
|
605 |
+
response = _get_s3_client(scheme).list_objects(Bucket=bucket_name, Prefix=prefix, Delimiter="/")
|
606 |
+
assert not response["IsTruncated"] # need to handle this if it happens
|
607 |
+
latest_step = 0
|
608 |
+
latest_checkpoint: Optional[str] = None
|
609 |
+
for item in response["CommonPrefixes"]:
|
610 |
+
prefix = item["Prefix"].strip("/")
|
611 |
+
checkpoint_name = os.path.split(prefix)[-1]
|
612 |
+
if not checkpoint_name.startswith("step"):
|
613 |
+
continue
|
614 |
+
try:
|
615 |
+
step = int(checkpoint_name.replace("step", "").replace("-unsharded", ""))
|
616 |
+
except ValueError:
|
617 |
+
continue
|
618 |
+
# Make sure the checkpoint dir contains a config, otherwise the checkpoint is incomplete
|
619 |
+
# (upload might have have failed part way through).
|
620 |
+
try:
|
621 |
+
_s3_file_size(scheme, bucket_name, f"{prefix}/config.yaml")
|
622 |
+
except FileNotFoundError:
|
623 |
+
continue
|
624 |
+
# We prioritize sharded checkpoints over unsharded ones.
|
625 |
+
if step > latest_step or (step == latest_step and not checkpoint_name.endswith("-unsharded")):
|
626 |
+
latest_step = step
|
627 |
+
latest_checkpoint = f"{scheme}://{bucket_name}/{prefix}"
|
628 |
+
return latest_checkpoint
|
629 |
+
|
630 |
+
|
631 |
+
def _http_file_size(scheme: str, host_name: str, path: str) -> int:
|
632 |
+
import requests
|
633 |
+
|
634 |
+
response = requests.head(f"{scheme}://{host_name}/{path}", allow_redirects=True)
|
635 |
+
return int(response.headers.get("content-length"))
|
636 |
+
|
637 |
+
|
638 |
+
def _http_get_bytes_range(scheme: str, host_name: str, path: str, bytes_start: int, num_bytes: int) -> bytes:
|
639 |
+
import requests
|
640 |
+
|
641 |
+
response = requests.get(
|
642 |
+
f"{scheme}://{host_name}/{path}", headers={"Range": f"bytes={bytes_start}-{bytes_start+num_bytes-1}"}
|
643 |
+
)
|
644 |
+
result = response.content
|
645 |
+
assert (
|
646 |
+
len(result) == num_bytes
|
647 |
+
), f"expected {num_bytes} bytes, got {len(result)}" # Some web servers silently ignore range requests and send everything
|
648 |
+
return result
|
649 |
+
|
650 |
+
|
651 |
+
def default_thread_count() -> int:
|
652 |
+
return int(os.environ.get("OLMO_NUM_THREADS") or min(32, (os.cpu_count() or 1) + 4))
|
653 |
+
|
654 |
+
|
655 |
+
def pass_through_fn(fn, *args, **kwargs):
|
656 |
+
return fn(*args, **kwargs)
|
657 |
+
|
658 |
+
|
659 |
+
def threaded_generator(g, maxsize: int = 16, thread_name: Optional[str] = None):
|
660 |
+
q: Queue = Queue(maxsize=maxsize)
|
661 |
+
|
662 |
+
sentinel = object()
|
663 |
+
|
664 |
+
def fill_queue():
|
665 |
+
try:
|
666 |
+
for value in g:
|
667 |
+
q.put(value)
|
668 |
+
except Exception as e:
|
669 |
+
q.put(e)
|
670 |
+
finally:
|
671 |
+
q.put(sentinel)
|
672 |
+
|
673 |
+
thread_name = thread_name or repr(g)
|
674 |
+
thread = Thread(name=thread_name, target=fill_queue, daemon=True)
|
675 |
+
thread.start()
|
676 |
+
|
677 |
+
for x in iter(q.get, sentinel):
|
678 |
+
if isinstance(x, Exception):
|
679 |
+
raise OLMoThreadError(f"generator thread {thread_name} failed") from x
|
680 |
+
else:
|
681 |
+
yield x
|
682 |
+
|
683 |
+
|
684 |
+
def split_dict_of_list(batch, split_size):
|
685 |
+
out = None
|
686 |
+
for key, val in batch.items():
|
687 |
+
parts = split_list(val, split_size)
|
688 |
+
if out is None:
|
689 |
+
out = [{key: part} for part in parts]
|
690 |
+
else:
|
691 |
+
assert len(out) == len(parts)
|
692 |
+
for out_dict, part in zip(out, parts):
|
693 |
+
out_dict[key] = part
|
694 |
+
return out
|
695 |
+
|
696 |
+
|
697 |
+
def split_list(lst, split_size):
|
698 |
+
assert len(lst) % split_size == 0
|
699 |
+
n = len(lst) // split_size
|
700 |
+
return [lst[i*split_size:(i+1)*split_size] for i in range(n)]
|
701 |
+
|
702 |
+
|
703 |
+
def flatten_list(lst):
|
704 |
+
return [x for xs in lst for x in xs]
|
705 |
+
|
706 |
+
|
707 |
+
def roundrobin(*iterables):
|
708 |
+
"""
|
709 |
+
Call the given iterables in a round-robin fashion. For example:
|
710 |
+
``roundrobin('ABC', 'D', 'EF') --> A D E B F C``
|
711 |
+
"""
|
712 |
+
# Adapted from https://docs.python.org/3/library/itertools.html#itertools-recipes
|
713 |
+
num_active = len(iterables)
|
714 |
+
nexts = cycle(iter(it).__next__ for it in iterables)
|
715 |
+
while num_active:
|
716 |
+
try:
|
717 |
+
for next in nexts:
|
718 |
+
yield next()
|
719 |
+
except StopIteration:
|
720 |
+
# Remove the iterator we just exhausted from the cycle.
|
721 |
+
num_active -= 1
|
722 |
+
nexts = cycle(islice(nexts, num_active))
|
723 |
+
|
724 |
+
|
725 |
+
def add_cached_path_clients():
|
726 |
+
add_scheme_client(WekaClient)
|
727 |
+
|
728 |
+
|
729 |
+
class WekaClient(SchemeClient):
|
730 |
+
recoverable_errors = SchemeClient.recoverable_errors + (
|
731 |
+
boto_exceptions.HTTPClientError,
|
732 |
+
boto_exceptions.ConnectionError,
|
733 |
+
)
|
734 |
+
|
735 |
+
scheme = "weka"
|
736 |
+
|
737 |
+
def __init__(self, resource: str) -> None:
|
738 |
+
SchemeClient.__init__(self, resource)
|
739 |
+
self.bucket_name, self.path = WekaClient._split_cloud_path(resource, "weka")
|
740 |
+
self.s3 = _get_s3_client("weka")
|
741 |
+
self.object_info = None
|
742 |
+
|
743 |
+
@staticmethod
|
744 |
+
def _split_cloud_path(url: str, provider: str) -> Tuple[str, str]:
|
745 |
+
"""Split a full s3 path into the bucket name and path."""
|
746 |
+
from urllib.parse import urlparse
|
747 |
+
|
748 |
+
parsed = urlparse(url)
|
749 |
+
if not parsed.netloc or not parsed.path:
|
750 |
+
raise ValueError("bad {} path {}".format(provider, url))
|
751 |
+
bucket_name = parsed.netloc
|
752 |
+
provider_path = parsed.path
|
753 |
+
# Remove '/' at beginning of path.
|
754 |
+
if provider_path.startswith("/"):
|
755 |
+
provider_path = provider_path[1:]
|
756 |
+
return bucket_name, provider_path
|
757 |
+
|
758 |
+
def _ensure_object_info(self):
|
759 |
+
if self.object_info is None:
|
760 |
+
try:
|
761 |
+
self.object_info = self.s3.head_object(Bucket=self.bucket_name, Key=self.path)
|
762 |
+
except boto_exceptions.ClientError as e:
|
763 |
+
if e.response["ResponseMetadata"]["HTTPStatusCode"] == 404:
|
764 |
+
raise FileNotFoundError(f"weka://{self.bucket_name}/{self.path}") from e
|
765 |
+
raise e
|
766 |
+
|
767 |
+
def get_etag(self) -> Optional[str]:
|
768 |
+
self._ensure_object_info()
|
769 |
+
assert self.object_info is not None
|
770 |
+
return self.object_info.get("ETag")
|
771 |
+
|
772 |
+
def get_size(self) -> Optional[int]:
|
773 |
+
self._ensure_object_info()
|
774 |
+
assert self.object_info is not None
|
775 |
+
return self.object_info.get("ContentLength")
|
776 |
+
|
777 |
+
def get_resource(self, temp_file: io.BufferedWriter) -> None:
|
778 |
+
self.s3.download_fileobj(Fileobj=temp_file, Bucket=self.bucket_name, Key=self.path)
|
779 |
+
|
780 |
+
def get_bytes_range(self, index: int, length: int) -> bytes:
|
781 |
+
response = self.s3.get_object(
|
782 |
+
Bucket=self.bucket_name, Key=self.path, Range=f"bytes={index}-{index+length-1}"
|
783 |
+
)
|
784 |
+
return response["Body"].read()
|
785 |
+
|