Muennighoff commited on
Commit
d13896f
·
1 Parent(s): 11742a6
Files changed (7) hide show
  1. aliases.py +7 -0
  2. checkpoint.py +2022 -0
  3. config.json +130 -16
  4. config_molmoe.py +907 -88
  5. modeling_molmoe.py +0 -0
  6. pytorch_model.bin +2 -2
  7. util.py +785 -0
aliases.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ from os import PathLike
2
+ from typing import Union
3
+
4
+ __all__ = ["PathOrStr"]
5
+
6
+
7
+ PathOrStr = Union[str, PathLike]
checkpoint.py ADDED
@@ -0,0 +1,2022 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gc
2
+ import io
3
+ import logging
4
+ import pickle
5
+ import shutil
6
+ import traceback
7
+ from abc import ABCMeta, abstractmethod
8
+ from collections import defaultdict
9
+ from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor, as_completed
10
+ from contextlib import contextmanager
11
+ from copy import deepcopy
12
+ from dataclasses import dataclass, field, replace
13
+ from functools import reduce
14
+ from multiprocessing import shared_memory
15
+ from pathlib import Path
16
+ from typing import Any, Dict, Generator, List, Optional, Set, Tuple, cast
17
+
18
+ import numpy as np
19
+ import torch
20
+ import torch.distributed.checkpoint as dist_cp
21
+ import torch.multiprocessing as mp
22
+ import torch.nn as nn
23
+ from packaging import version
24
+ from torch.distributed import _remote_device
25
+ from torch.distributed._shard._utils import narrow_tensor_by_index
26
+ from torch.distributed._shard.metadata import ShardMetadata
27
+ from torch.distributed._shard.sharded_tensor import ShardedTensor
28
+ from torch.distributed.checkpoint.filesystem import WriteResult, _StorageInfo
29
+ from torch.distributed.checkpoint.metadata import Metadata, MetadataIndex
30
+ from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict
31
+ from torch.distributed.checkpoint.planner import LoadItemType, ReadItem
32
+ from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
33
+ from torch.distributed.fsdp import StateDictType
34
+ from torch.distributed.fsdp.api import (
35
+ FullOptimStateDictConfig,
36
+ FullStateDictConfig,
37
+ ShardedOptimStateDictConfig,
38
+ ShardedStateDictConfig,
39
+ )
40
+ from torch.futures import Future
41
+ from torch.nn.parallel import DistributedDataParallel as DDP
42
+
43
+ try:
44
+ from torch.distributed.fsdp.flat_param import FlatParamHandle # type: ignore
45
+ except ModuleNotFoundError:
46
+ from torch.distributed.fsdp._flat_param import FlatParamHandle # type: ignore
47
+
48
+ from olmo import util
49
+
50
+ from .aliases import PathOrStr
51
+ from .config import BaseConfig, ShardedCheckpointerType, TrainConfig
52
+ from .exceptions import OLMoCheckpointError
53
+ from .optim import Optimizer, fix_optim_state_dict
54
+ from .safetensors_util import safetensors_file_to_state_dict
55
+ from .torch_util import (
56
+ barrier,
57
+ gc_cuda,
58
+ get_fs_local_rank,
59
+ get_global_rank,
60
+ get_local_rank,
61
+ get_local_world_size,
62
+ get_world_size,
63
+ )
64
+ from .util import (
65
+ _get_s3_client,
66
+ default_thread_count,
67
+ dir_is_empty,
68
+ get_bytes_range,
69
+ get_progress_bar,
70
+ resource_path,
71
+ upload,
72
+ wait_for,
73
+ )
74
+
75
+ __all__ = [
76
+ "save_fsdp_model_and_optim_state",
77
+ "load_fsdp_model_and_optim_state",
78
+ "load_fsdp_optim_state",
79
+ "save_state_dict",
80
+ "load_state_dict",
81
+ "load_model_state",
82
+ "RemoteFileSystemWriter",
83
+ "RemoteFileSystemReader",
84
+ "Checkpointer",
85
+ "FullCheckpointer",
86
+ "TorchNewStyleShardedCheckpointer",
87
+ "TorchLegacyShardedCheckpointer",
88
+ "LocalShardedCheckpointer",
89
+ "build_sharded_checkpointer",
90
+ ]
91
+
92
+
93
+ log = logging.getLogger(__name__)
94
+
95
+ MODEL_AND_OPTIM_FOLDER = "model_and_optim"
96
+
97
+
98
+ def save_fsdp_model_and_optim_state(
99
+ checkpoint_dir: PathOrStr,
100
+ fsdp_model: FSDP,
101
+ optim: Optimizer,
102
+ *,
103
+ upload_to: Optional[str] = None,
104
+ save_overwrite: bool = False,
105
+ ):
106
+ """
107
+ Use this to save a state dict for an FSDP model and its optimizer via :module:`torch.distributed.checkpoint`
108
+ functions. This should be used during distributed training and should be called by all ranks.
109
+
110
+ :param checkpoint_dir: The directory to save to.
111
+ :param fsdp_model: The FSDP model.
112
+ :param optim: The FSDP model's optimizer.
113
+ :param upload_to: Optional, a remote "directory" to upload the checkpoint files to.
114
+ :param save_overwrite: Overwrite existing files.
115
+
116
+ :raises FileExistsError: If a model and optim checkpoint already exists in ``checkpoint_dir`` and ``save_overwrite=False``.
117
+ """
118
+ checkpoint_dir = Path(checkpoint_dir)
119
+ target_dir = checkpoint_dir / MODEL_AND_OPTIM_FOLDER
120
+ if save_overwrite:
121
+ if get_fs_local_rank() == 0:
122
+ shutil.rmtree(target_dir, ignore_errors=True)
123
+ elif not dir_is_empty(target_dir):
124
+ raise FileExistsError(target_dir)
125
+ barrier()
126
+ if get_fs_local_rank() == 0:
127
+ target_dir.mkdir(exist_ok=True, parents=True)
128
+ barrier()
129
+ with FSDP.state_dict_type(
130
+ fsdp_model,
131
+ state_dict_type=StateDictType.SHARDED_STATE_DICT,
132
+ state_dict_config=ShardedStateDictConfig(offload_to_cpu=True),
133
+ optim_state_dict_config=ShardedOptimStateDictConfig(offload_to_cpu=True),
134
+ ):
135
+ model_and_optim_state = {
136
+ "model": fsdp_model.state_dict(),
137
+ "optim": FSDP.optim_state_dict(fsdp_model, optim),
138
+ }
139
+ dist_cp.save_state_dict(
140
+ model_and_optim_state,
141
+ RemoteFileSystemWriter(
142
+ target_dir,
143
+ upload_to=None if upload_to is None else f"{upload_to.rstrip('/')}/{MODEL_AND_OPTIM_FOLDER}",
144
+ save_overwrite=save_overwrite,
145
+ ),
146
+ )
147
+
148
+
149
+ def load_fsdp_model_and_optim_state(
150
+ checkpoint_dir: PathOrStr,
151
+ fsdp_model: FSDP,
152
+ optim: Optimizer,
153
+ *,
154
+ local_cache: Optional[PathOrStr] = None,
155
+ load_optimizer_state: bool = True,
156
+ ):
157
+ """
158
+ Use this to load a state dict for an FSDP model and its optimizer via :module:`torch.distributed.checkpoint`
159
+ functions. This should be used during distributed training and should be called by all ranks.
160
+
161
+ :param checkpoint_dir: The checkpoint directory to load from. This can be a local or remote directory.
162
+ :param fsdp_model: The FSDP model.
163
+ :param optim: The FSDP model's optimizer.
164
+ :param local_cache: A local cache of the checkpoint directory. Use this when the ``checkpoint_dir`` is a
165
+ remote "directory" but there might be a cached version of the same artifacts.
166
+ :param load_optimizer_state: Set to ``False`` to skip loading the optimizer state.
167
+
168
+ :raises FileNotFoundError: If the ``checkpoint_dir`` doesn't contain a model and optimizer checkpoint.
169
+ """
170
+ load_path = str(checkpoint_dir).rstrip("/")
171
+ local_cache = None if local_cache is None else Path(local_cache)
172
+ with FSDP.state_dict_type(
173
+ fsdp_model,
174
+ state_dict_type=StateDictType.SHARDED_STATE_DICT,
175
+ state_dict_config=ShardedStateDictConfig(offload_to_cpu=True),
176
+ optim_state_dict_config=ShardedOptimStateDictConfig(offload_to_cpu=True),
177
+ ):
178
+ # Load the model state dict in place.
179
+ log.info("Loading model state...")
180
+ model_state = {"model": fsdp_model.state_dict()}
181
+ dist_cp.load_state_dict(
182
+ model_state,
183
+ RemoteFileSystemReader(
184
+ f"{load_path}/{MODEL_AND_OPTIM_FOLDER}",
185
+ local_cache=None if local_cache is None else local_cache / MODEL_AND_OPTIM_FOLDER,
186
+ ),
187
+ )
188
+ fsdp_model.load_state_dict(model_state["model"])
189
+
190
+ if not load_optimizer_state:
191
+ return
192
+
193
+ # Load optim state dict in place.
194
+ log.info("Loading sharded optimizer state...")
195
+ optim_state = load_sharded_optimizer_state_dict(
196
+ model_state_dict=model_state["model"],
197
+ optimizer_key="optim",
198
+ storage_reader=RemoteFileSystemReader(
199
+ f"{load_path}/{MODEL_AND_OPTIM_FOLDER}",
200
+ local_cache=None if local_cache is None else local_cache / MODEL_AND_OPTIM_FOLDER,
201
+ ),
202
+ )
203
+ # optim_state["optim"] = {
204
+ # 'state': { fqn: { 'grad_norm_exp_avg': Tensor, 'step': Tensor, 'exp_avg': ShardedTensor, 'exp_avg_sq': ShardedTensor } },
205
+ # 'param_groups': [{ 'param_names': [ fsdp_fqn, ... ], 'params': [ fqn, ... ], ... }],
206
+ # }
207
+ del model_state
208
+
209
+ # Make sure tensors are on CPU! PyTorch puts them on GPU even though we have `offload_to_cpu=True`.
210
+ for state in optim_state["optim"]["state"].values():
211
+ for k in state.keys():
212
+ state[k] = state[k].cpu()
213
+ gc_cuda()
214
+
215
+ load_fsdp_optim_state(fsdp_model, optim, optim_state["optim"])
216
+
217
+
218
+ def load_fsdp_optim_state(fsdp_model: FSDP, optim: Optimizer, optim_state: Dict[str, Any]):
219
+ log.info("Flattening sharded optimizer state...")
220
+ # flattened_osd = {
221
+ # 'state': { id: { 'grad_norm_exp_avg': Tensor, 'step': Tensor, 'exp_avg': Tensor, 'exp_avg_sq': Tensor } },
222
+ # 'param_groups': [{ 'param_names': [ fsdp_fqn, ... ], 'params': [ id, ... ], ... }],
223
+ # }
224
+ # NOTE: Careful! The order of the these arguments has changed from 2.0 to 2.1... ¯\_(ツ)_/¯
225
+ if version.parse(torch.__version__) < version.parse("2.1.0"):
226
+ flattened_osd = FSDP.optim_state_dict_to_load(optim_state, fsdp_model, optim) # type: ignore
227
+ else:
228
+ flattened_osd = FSDP.optim_state_dict_to_load(fsdp_model, optim, optim_state) # type: ignore
229
+
230
+ del optim_state
231
+ gc_cuda()
232
+
233
+ log.info("Loading flattened optimizer state...")
234
+
235
+ # Put optim state on CPU since `Optimizer.load_state_dict()` will create a deepcopy of the whole state dict,
236
+ # which takes up unnecessary GPU memory.
237
+ for state in flattened_osd["state"].values():
238
+ for k in state.keys():
239
+ state[k] = state[k].cpu()
240
+ gc_cuda()
241
+
242
+ optim.load_state_dict(fix_optim_state_dict(optim, flattened_osd))
243
+
244
+
245
+ def save_state_dict(
246
+ checkpoint_dir: PathOrStr,
247
+ fname: str,
248
+ state_dict: Dict[str, Any],
249
+ *,
250
+ upload_to: Optional[str] = None,
251
+ save_overwrite: bool = False,
252
+ synchronize: bool = True,
253
+ ):
254
+ """
255
+ Save a regular state dict to the file ``fname`` within ``checkpoint_dir`` using :func:`torch.save()`.
256
+ This can be used during distributed training or not. If during distributed training the ``fname`` should be unique
257
+ for each rank.
258
+
259
+ :param checkpoint_dir: The directory to save to.
260
+ :param fname: The target file within ``checkpoint_dir`` to save to. This should be a path relative to the ``checkpoint_dir``.
261
+ :param state_dict: The state dict to save.
262
+ :param upload_to: Optional, a remote "directory" to upload the file to.
263
+ :param save_overwrite: Overwrite existing files.
264
+ :param synchronize: If ``False``, don't do any distributed synchronization. Use this when only calling
265
+ this function from a single rank.
266
+
267
+ :raises FileExistsError: If the ``fname`` already exists within ``checkpoint_dir`` and ``save_overwrite=False``.
268
+ """
269
+ checkpoint_dir = Path(checkpoint_dir)
270
+ target_path = checkpoint_dir / fname
271
+ if save_overwrite:
272
+ target_path.unlink(missing_ok=True)
273
+ elif target_path.is_file():
274
+ raise FileExistsError(target_path)
275
+ if synchronize:
276
+ barrier()
277
+ target_path.parent.mkdir(exist_ok=True, parents=True)
278
+ if synchronize:
279
+ barrier()
280
+ torch.save(state_dict, target_path)
281
+ if upload_to is not None:
282
+ upload_target = f"{upload_to.rstrip('/')}/{fname}"
283
+ log.info(f"Uploading {target_path} to {upload_target}...")
284
+ upload(target_path, upload_target, save_overwrite=save_overwrite)
285
+
286
+
287
+ def load_state_dict(
288
+ checkpoint_dir: PathOrStr,
289
+ fname: str,
290
+ *,
291
+ local_cache: Optional[PathOrStr] = None,
292
+ map_location: Optional[str] = None,
293
+ ):
294
+ """
295
+ Load a regular state dict from the file ``fname`` within ``checkpoint_dir`` using :func:`torch.load()`.
296
+ This can be used during distributed training or not.
297
+
298
+ :param checkpoint_dir: A local or remote checkpoint directory.
299
+ :param fname: The target file within the ``checkpoint_dir``. This should be a path relative to the ``checkpoint_dir``.
300
+ :param local_cache: A local cache of the checkpoint directory. Use this when the ``checkpoint_dir`` is a
301
+ remote "directory" but there might be a cached version of the same artifacts.
302
+
303
+ :raises FileNotFoundError: If ``fname`` doesn't exist in the ``checkpoint_dir`` or the local cache.
304
+ """
305
+ if fname.endswith(".pt"):
306
+ # Try safetensors version first.
307
+ try:
308
+ path = resource_path(
309
+ str(checkpoint_dir).rstrip("/"), fname[:-2] + "safetensors", local_cache=local_cache
310
+ )
311
+ return safetensors_file_to_state_dict(path, map_location=map_location)
312
+ except FileNotFoundError:
313
+ pass
314
+
315
+ path = resource_path(str(checkpoint_dir).rstrip("/"), fname, local_cache=local_cache)
316
+ return torch.load(path, map_location=map_location)
317
+
318
+
319
+ def load_model_state(checkpoint_dir: PathOrStr, model: torch.nn.Module):
320
+ """
321
+ Load model state from a distributed FSDP model checkpoint created from :func:`save_fsdp_model_and_optim_state()`.
322
+ Note that ``model`` should not be wrapped with FSDP.
323
+ """
324
+ state_dict = {"model": model.state_dict()}
325
+ dist_cp.load_state_dict(
326
+ state_dict,
327
+ RemoteFileSystemReader(f"{str(checkpoint_dir).rstrip('/')}/{MODEL_AND_OPTIM_FOLDER}"),
328
+ no_dist=True,
329
+ )
330
+ model.load_state_dict(state_dict["model"])
331
+
332
+
333
+ class RemoteFileSystemWriter(dist_cp.FileSystemWriter):
334
+ """
335
+ A subclass of :class:`~torch.distributed.checkpoint.FileSystemWriter` that can upload files
336
+ directly to a cloud bucket when ``upload_to`` is specified.
337
+ """
338
+
339
+ def __init__(
340
+ self,
341
+ path: PathOrStr,
342
+ single_file_per_rank: bool = True,
343
+ sync_files: bool = True,
344
+ thread_count: Optional[int] = None,
345
+ per_thread_copy_ahead: int = 10_000_000,
346
+ upload_to: Optional[str] = None,
347
+ save_overwrite: bool = False,
348
+ ) -> None:
349
+ if thread_count is not None and thread_count <= 0:
350
+ raise ValueError("thread count must be at least 1")
351
+ super().__init__(
352
+ path,
353
+ single_file_per_rank=single_file_per_rank,
354
+ sync_files=sync_files,
355
+ # NOTE: we default to 1 thread here instead of whatever `default_thread_count()`
356
+ # returns because uploading big checkpoint files with multiple threads causes
357
+ # boto3 to fail in weird ways.
358
+ thread_count=thread_count or 1,
359
+ per_thread_copy_ahead=per_thread_copy_ahead,
360
+ )
361
+ self.upload_to = None if upload_to is None else upload_to.rstrip("/")
362
+ self.save_overwrite = save_overwrite
363
+
364
+ def write_data(
365
+ self,
366
+ plan: dist_cp.SavePlan,
367
+ planner: dist_cp.SavePlanner,
368
+ ) -> Future[List[WriteResult]]:
369
+ fut = super().write_data(plan, planner)
370
+ if self.upload_to is not None:
371
+ files_to_upload = set()
372
+ for write_result in fut.wait():
373
+ files_to_upload.add(write_result.storage_data.relative_path)
374
+
375
+ # Create the global S3 client up front to work around a threading issue in boto.
376
+ if self.upload_to.startswith("s3://"):
377
+ _get_s3_client("s3")
378
+ elif self.upload_to.startswith("r2://"):
379
+ _get_s3_client("r2")
380
+ elif self.upload_to.startswith("weka://"):
381
+ _get_s3_client("weka")
382
+
383
+ with ThreadPoolExecutor(max_workers=self.thread_count) as executor:
384
+ futures = []
385
+ for fname in files_to_upload:
386
+ source = self.path / fname
387
+ target = f"{self.upload_to}/{fname}"
388
+ log.info(f"Uploading {source} to {target}...")
389
+ futures.append(executor.submit(upload, source, target, save_overwrite=self.save_overwrite))
390
+ for f in as_completed(futures):
391
+ try:
392
+ f.result()
393
+ except BaseException:
394
+ # NOTE: we might get an error here that can't be pickled, which causes a different failure
395
+ # later when PyTorch tries to reduce that error across ranks. So here we just make
396
+ # sure we're raising a simple error type that can be pickled.
397
+ raise OLMoCheckpointError(f"Original error:\n{traceback.format_exc()}")
398
+ return fut
399
+
400
+ def finish(self, metadata: Metadata, results: List[List[WriteResult]]) -> None:
401
+ super().finish(metadata, results)
402
+ if self.upload_to is not None:
403
+ source = self.path / ".metadata"
404
+ target = f"{self.upload_to}/.metadata"
405
+ log.info(f"Uploading {source} to {target}...")
406
+ upload(source, target, save_overwrite=self.save_overwrite)
407
+
408
+
409
+ class RemoteFileSystemReader(dist_cp.StorageReader):
410
+ """
411
+ A :class:`~torch.distributed.checkpoint.StorageReader` based on :class:`~torch.distributed.checkpoint.FileSystemReader`
412
+ that can read data directly from cloud storage as well as a local directory.
413
+ """
414
+
415
+ def __init__(
416
+ self, path: PathOrStr, *, local_cache: Optional[PathOrStr] = None, thread_count: Optional[int] = None
417
+ ):
418
+ super().__init__()
419
+ if thread_count is not None and thread_count <= 0:
420
+ raise ValueError("thread count must be at least 1")
421
+ self.path = str(path).rstrip("/")
422
+ self.cache = None if local_cache is None else Path(local_cache)
423
+ self.thread_count = thread_count or default_thread_count()
424
+ self.storage_data: Dict[MetadataIndex, _StorageInfo] = dict()
425
+ self._metadata: Optional[Metadata] = None
426
+
427
+ def _get_bytes(self, relative_path: str, offset: int, length: int) -> bytes:
428
+ if self.cache is not None and (path := self.cache / relative_path).is_file():
429
+ return get_bytes_range(path, offset, length)
430
+ else:
431
+ return get_bytes_range(f"{self.path}/{relative_path}", offset, length)
432
+
433
+ def _get_content_for_read(self, read_item: ReadItem) -> Tuple[ReadItem, bytes]:
434
+ sinfo = self.storage_data[read_item.storage_index]
435
+ content = self._get_bytes(sinfo.relative_path, sinfo.offset, sinfo.length)
436
+ return (read_item, content)
437
+
438
+ def read_data(self, plan: dist_cp.LoadPlan, planner: dist_cp.LoadPlanner) -> Future[None]:
439
+ # Create the global S3 client up front to work around a threading issue in boto.
440
+ if isinstance(self.path, str):
441
+ if self.path.startswith("s3://"):
442
+ _get_s3_client("s3")
443
+ elif self.path.startswith("r2://"):
444
+ _get_s3_client("r2")
445
+ elif self.path.startswith("weka://"):
446
+ _get_s3_client("weka")
447
+
448
+ with ThreadPoolExecutor(max_workers=self.thread_count) as executor:
449
+ read_item_content_futures = []
450
+ for read_item in plan.items:
451
+ read_item_content_futures.append(executor.submit(self._get_content_for_read, read_item))
452
+ read_item_content_results = []
453
+ for f in as_completed(read_item_content_futures):
454
+ try:
455
+ read_item_content_results.append(f.result())
456
+ except BaseException:
457
+ # NOTE: we might get an error here that can't be pickled, which causes a different failure
458
+ # later when PyTorch tries to reduce that error across ranks. So here we just make
459
+ # sure we're raising a simple error type that can be pickled.
460
+ raise OLMoCheckpointError(f"Original error:\n{traceback.format_exc()}")
461
+
462
+ # Modified from `FileSystemReader.read_data()`
463
+ for read_item, content in read_item_content_results:
464
+ bytes = io.BytesIO(content)
465
+ bytes.seek(0)
466
+ if read_item.type == LoadItemType.BYTE_IO:
467
+ planner.load_bytes(read_item, bytes)
468
+ else:
469
+ tensor = cast(torch.Tensor, torch.load(bytes, map_location="cpu"))
470
+ tensor = narrow_tensor_by_index(tensor, read_item.storage_offsets, read_item.lengths)
471
+ target_tensor = planner.resolve_tensor(read_item).detach()
472
+
473
+ assert (
474
+ target_tensor.size() == tensor.size()
475
+ ), f"req {read_item.storage_index} mismatch sizes {target_tensor.size()} vs {tensor.size()}"
476
+ target_tensor.copy_(tensor)
477
+ planner.commit_tensor(read_item, target_tensor)
478
+
479
+ fut: Future = Future()
480
+ fut.set_result(None)
481
+ return fut
482
+
483
+ def read_metadata(self) -> Metadata:
484
+ if self._metadata is None:
485
+ with resource_path(self.path, ".metadata", local_cache=self.cache).open("rb") as metadata_file:
486
+ self._metadata = pickle.load(metadata_file)
487
+ return self._metadata
488
+
489
+ def set_up_storage_reader(self, metadata: Metadata, is_coordinator: bool) -> None:
490
+ del is_coordinator
491
+ self.storage_data = metadata.storage_data
492
+ assert self.storage_data is not None
493
+
494
+ def prepare_local_plan(self, plan: dist_cp.LoadPlan) -> dist_cp.LoadPlan:
495
+ return plan
496
+
497
+ def prepare_global_plan(self, global_plan: List[dist_cp.LoadPlan]) -> List[dist_cp.LoadPlan]:
498
+ return global_plan
499
+
500
+
501
+ class Checkpointer(metaclass=ABCMeta):
502
+ def __init__(self, cfg: TrainConfig, thread_count: Optional[int] = None):
503
+ self.cfg = cfg
504
+ self.thread_count = thread_count or default_thread_count()
505
+
506
+ @abstractmethod
507
+ def save_checkpoint(
508
+ self,
509
+ dir: PathOrStr,
510
+ dist_model: nn.Module,
511
+ optim: Optimizer,
512
+ train_state: Dict[str, Any],
513
+ *,
514
+ upload_to: Optional[str] = None,
515
+ ) -> None:
516
+ raise NotImplementedError
517
+
518
+ @abstractmethod
519
+ def restore_checkpoint(
520
+ self,
521
+ load_path: PathOrStr,
522
+ dist_model: nn.Module,
523
+ optim: Optimizer,
524
+ *,
525
+ local_cache: Optional[PathOrStr] = None,
526
+ load_optimizer_state: bool = True,
527
+ ) -> Dict[str, Any]:
528
+ """
529
+ Restores a checkpoint to the model and optimizer. Returns the remaining trainer state.
530
+ """
531
+ raise NotImplementedError
532
+
533
+ def unshard_checkpoint(
534
+ self,
535
+ load_path: PathOrStr,
536
+ *,
537
+ local_cache: Optional[PathOrStr] = None,
538
+ load_optimizer_state: bool = True,
539
+ load_trainer_state: bool = True,
540
+ device: Optional[torch.device] = None,
541
+ ) -> Tuple[Dict[str, torch.Tensor], Optional[Dict[str, Any]], Optional[Dict[str, Any]]]:
542
+ """
543
+ Unshard a checkpoint.
544
+
545
+ Note this is not marked abstract because child classes are not required to implemented this.
546
+ """
547
+ raise NotImplementedError
548
+
549
+ @contextmanager
550
+ def _temporary_wd(self, dir: PathOrStr) -> Generator[Path, None, None]:
551
+ # Make sure checkpoint directory doesn't exist unless it's okay to overwrite it.
552
+ checkpoint_dir = Path(dir)
553
+ if not dir_is_empty(checkpoint_dir):
554
+ if self.cfg.save_overwrite:
555
+ if get_fs_local_rank() == 0:
556
+ shutil.rmtree(checkpoint_dir, ignore_errors=True)
557
+ else:
558
+ raise FileExistsError(checkpoint_dir)
559
+ # No need to mkdir here since we'll directly replace the temporary directory with
560
+ # this directory below.
561
+ barrier()
562
+
563
+ # Prepare temporary directory. We don't have to be as careful here, we can
564
+ # just remove it if it already exists.
565
+ checkpoint_dir_tmp = checkpoint_dir.with_name(checkpoint_dir.name + "-tmp")
566
+ if get_fs_local_rank() == 0:
567
+ shutil.rmtree(checkpoint_dir_tmp, ignore_errors=True)
568
+ checkpoint_dir_tmp.mkdir(exist_ok=True, parents=True)
569
+
570
+ # In the cases where we're using a shared NFS drive between ranks to save checkpoints,
571
+ # creating the temp directory from rank 0 might not be immediately
572
+ # realized in the file systems of the other ranks.
573
+ # So we wait here across all ranks until that tmp checkpoint directory is visible.
574
+ wait_for(lambda: checkpoint_dir_tmp.exists(), "Waiting for checkpoint directory", timeout=10.0)
575
+
576
+ barrier()
577
+
578
+ # Yield temporary directory for `.save_checkpoint()` to use.
579
+ yield checkpoint_dir_tmp
580
+
581
+ barrier()
582
+
583
+ # Finally if all went well replace the temporary directory with the actual
584
+ # checkpoint directory.
585
+ if get_fs_local_rank() == 0:
586
+ # Replace temp directory with target checkpoint directory.
587
+ try:
588
+ checkpoint_dir_tmp.replace(checkpoint_dir)
589
+ except FileNotFoundError:
590
+ # Caught when another (file-system) local rank 0 has already replaced the tmp directory.
591
+ # This can happen when nodes are saving to a common NFS drive but otherwise have distinct
592
+ # file-systems.
593
+ if not checkpoint_dir.exists():
594
+ raise
595
+
596
+ # In the cases where we're using a shared NFS drive between ranks to save checkpoints,
597
+ # replacing the temp directory with the final directory from rank 0 might not be immediately
598
+ # realized in the file systems of the other ranks.
599
+ # So we wait here across all ranks until that final checkpoint directory is visible.
600
+ wait_for(lambda: checkpoint_dir.exists(), "Waiting for checkpoint directory", timeout=10.0)
601
+
602
+ barrier()
603
+
604
+ def _save_config(self, dir: PathOrStr, *, upload_to: Optional[str] = None) -> None:
605
+ if get_global_rank() == 0:
606
+ log.info("Saving config...")
607
+ self.cfg.save(config_path := Path(dir) / "config.yaml")
608
+ if upload_to is not None:
609
+ upload_target = f"{upload_to}/config.yaml"
610
+ log.info(f"Uploading {config_path} to {upload_target}")
611
+ upload(config_path, upload_target, save_overwrite=self.cfg.save_overwrite)
612
+
613
+
614
+ class FullCheckpointer(Checkpointer):
615
+ """
616
+ A :class:`Checkpointer` that saves a single full model and optimizer state dictionary.
617
+ """
618
+
619
+ def save_checkpoint(
620
+ self,
621
+ dir: PathOrStr,
622
+ dist_model: nn.Module,
623
+ optim: Optimizer,
624
+ trainer_state: Dict[str, Any],
625
+ *,
626
+ upload_to: Optional[str] = None,
627
+ ) -> None:
628
+ with self._temporary_wd(dir) as checkpoint_dir:
629
+ if isinstance(dist_model, FSDP):
630
+ with FSDP.state_dict_type(
631
+ dist_model,
632
+ state_dict_type=StateDictType.FULL_STATE_DICT,
633
+ state_dict_config=FullStateDictConfig(rank0_only=True, offload_to_cpu=True),
634
+ optim_state_dict_config=FullOptimStateDictConfig(rank0_only=True, offload_to_cpu=True),
635
+ ):
636
+ # We'll write the model and optimizer state dicts individually to reduce (CPU) memory consumption.
637
+ # First the model state.
638
+ model_state_dict = dist_model.state_dict()
639
+ self._write_model_dict(
640
+ model_state_dict, checkpoint_dir, upload_to, save_overwrite=self.cfg.save_overwrite
641
+ )
642
+
643
+ # Then the optimizer state.
644
+ optim_state_dict = FSDP.optim_state_dict(dist_model, optim)
645
+ self._write_optim_dict(
646
+ optim_state_dict, checkpoint_dir, upload_to, save_overwrite=self.cfg.save_overwrite
647
+ )
648
+ elif isinstance(dist_model, DDP):
649
+ # _write_model_dict and _write_optim_dict only write checkpoints for rank 0
650
+ # First, get the model state dict from DDP wrapped model
651
+ model_state_dict = dist_model.module.state_dict()
652
+ self._write_model_dict(
653
+ model_state_dict, checkpoint_dir, upload_to, save_overwrite=self.cfg.save_overwrite
654
+ )
655
+
656
+ # Then get the optimizer state dict
657
+ optim_state_dict = optim.state_dict()
658
+ self._write_optim_dict(
659
+ optim_state_dict, checkpoint_dir, upload_to, save_overwrite=self.cfg.save_overwrite
660
+ )
661
+ else:
662
+ log.info(
663
+ "`FullCheckpointer.save_checkpoint` only supported for FSDP and DDP distributed strategies!"
664
+ )
665
+
666
+ # Save trainer state.
667
+ if get_global_rank() == 0:
668
+ log.info("Saving trainer state...")
669
+ save_state_dict(
670
+ checkpoint_dir,
671
+ "train.pt",
672
+ trainer_state,
673
+ upload_to=upload_to,
674
+ save_overwrite=self.cfg.save_overwrite,
675
+ synchronize=False,
676
+ )
677
+ # Save config.
678
+ self._save_config(checkpoint_dir, upload_to=upload_to)
679
+
680
+ def restore_checkpoint(
681
+ self,
682
+ load_path: PathOrStr,
683
+ dist_model: nn.Module,
684
+ optim: Optimizer,
685
+ *,
686
+ local_cache: Optional[PathOrStr] = None,
687
+ load_optimizer_state: bool = True,
688
+ ) -> Dict[str, Any]:
689
+ if isinstance(dist_model, FSDP):
690
+ with FSDP.state_dict_type(
691
+ dist_model,
692
+ state_dict_type=StateDictType.FULL_STATE_DICT,
693
+ state_dict_config=FullStateDictConfig(rank0_only=False, offload_to_cpu=True),
694
+ optim_state_dict_config=FullOptimStateDictConfig(rank0_only=False, offload_to_cpu=True),
695
+ ):
696
+ with torch.no_grad():
697
+ # fill everything with NaN, so we can check afterwards that every parameter has been restored
698
+ for module_name, module in dist_model.named_modules():
699
+ if not isinstance(module, FSDP):
700
+ continue
701
+ for param in module.params:
702
+ param.fill_(torch.nan)
703
+
704
+ # restore params from checkpoint
705
+ state_dict_to_load = load_state_dict(
706
+ load_path, "model.pt", local_cache=local_cache, map_location="cpu"
707
+ )
708
+ (
709
+ state_dict_to_load,
710
+ og_keys_to_new,
711
+ ) = dist_model._fsdp_wrapped_module._make_state_dict_compatible(state_dict_to_load)
712
+
713
+ for module_name, module in dist_model.named_modules():
714
+ if not isinstance(module, FSDP):
715
+ continue
716
+ for param in module.params:
717
+ assert param._is_flat_param
718
+ for fqn, spi in zip(param._fqns, param._shard_param_infos):
719
+ if not spi.in_shard:
720
+ continue
721
+ key = f"{module_name}.{fqn}"
722
+ key = key.replace("_fsdp_wrapped_module.", "")
723
+ key = key.lstrip(".")
724
+ t = state_dict_to_load[key]
725
+ t = t.flatten()
726
+ param[spi.offset_in_shard : spi.offset_in_shard + spi.numel_in_shard].copy_(
727
+ t[spi.intra_param_start_idx : spi.intra_param_end_idx + 1]
728
+ )
729
+
730
+ # make sure that every parameter has been restored
731
+ for module_name, module in dist_model.named_modules():
732
+ if not isinstance(module, FSDP):
733
+ continue
734
+ for param in module.params:
735
+ if torch.isnan(param).any():
736
+ raise ValueError(
737
+ f"Module '{module_name}' contains NaNs, this is likely a bug restoring from full checkpoints"
738
+ )
739
+
740
+ # Load optimizer state.
741
+ if load_optimizer_state:
742
+ optim_state_dict_to_load = load_state_dict(
743
+ load_path, "optim.pt", local_cache=local_cache, map_location="cpu"
744
+ )
745
+ optim_state_dict_to_load = self._make_optim_state_dict_compatible(
746
+ optim_state_dict_to_load,
747
+ og_keys_to_new,
748
+ )
749
+ gc.collect()
750
+ torch.cuda.empty_cache()
751
+ barrier()
752
+ for turn in range(get_local_world_size()):
753
+ log.info("Loading optimizer state turn %d ...", turn)
754
+ if turn == get_local_rank():
755
+ load_fsdp_optim_state(dist_model, optim, optim_state_dict_to_load)
756
+ gc.collect()
757
+ torch.cuda.empty_cache()
758
+ barrier()
759
+ del optim_state_dict_to_load
760
+ elif isinstance(dist_model, DDP):
761
+ # Load model state.
762
+ with torch.no_grad():
763
+ state_dict_to_load = load_state_dict(
764
+ load_path, "model.pt", local_cache=local_cache, map_location="cpu"
765
+ )
766
+ dist_model.module.load_state_dict(state_dict_to_load, strict=True)
767
+
768
+ # Load optimizer state.
769
+ if load_optimizer_state:
770
+ optim_state_dict_to_load = load_state_dict(
771
+ load_path, "optim.pt", local_cache=local_cache, map_location="cpu"
772
+ )
773
+ optim.load_state_dict(optim_state_dict_to_load)
774
+
775
+ gc.collect()
776
+ torch.cuda.empty_cache()
777
+ barrier()
778
+ else:
779
+ raise NotImplementedError(
780
+ "`FullCheckpointer.restore_checkpoint` only supported for FSDP and DDP distributed strategies!"
781
+ )
782
+
783
+ # Load other state.
784
+ try:
785
+ trainer_state = load_state_dict(load_path, "train.pt", local_cache=local_cache)
786
+ except FileNotFoundError:
787
+ # for backwards compatibility
788
+ trainer_state = load_state_dict(load_path, "other.pt", local_cache=local_cache)
789
+ barrier()
790
+ return trainer_state
791
+
792
+ def _write_model_dict(self, model_state_dict, checkpoint_dir, upload_to, save_overwrite):
793
+ if get_global_rank() == 0:
794
+ log.info("Saving model state...")
795
+ save_state_dict(
796
+ checkpoint_dir,
797
+ "model.pt",
798
+ model_state_dict,
799
+ upload_to=upload_to,
800
+ save_overwrite=save_overwrite,
801
+ synchronize=False,
802
+ )
803
+
804
+ del model_state_dict
805
+ barrier()
806
+
807
+ def _write_optim_dict(self, optim_state_dict, checkpoint_dir, upload_to, save_overwrite):
808
+ if get_global_rank() == 0:
809
+ log.info("Saving optim state...")
810
+ save_state_dict(
811
+ checkpoint_dir,
812
+ "optim.pt",
813
+ optim_state_dict,
814
+ upload_to=upload_to,
815
+ save_overwrite=save_overwrite,
816
+ synchronize=False,
817
+ )
818
+
819
+ del optim_state_dict
820
+ barrier()
821
+
822
+ def _make_optim_state_dict_compatible(
823
+ self, optim_state_dict: Dict[str, Any], og_keys_to_new: Dict[str, Set[str]]
824
+ ) -> Dict[str, Any]:
825
+ # This state dict comes in two forms: one where the state keys are integers and one where the
826
+ # keys are fully qualified parameter names. The latter case is easier to deal with here so we
827
+ # first transform the integer key form into the FQN key form.
828
+ if isinstance(optim_state_dict["param_groups"][0]["params"][0], int):
829
+ id_to_fqn: Dict[int, str] = {}
830
+ for group in optim_state_dict["param_groups"]:
831
+ new_param_names = []
832
+ for fqn, id in zip(group["param_names"], group["params"]):
833
+ fqn = fqn.replace("_fsdp_wrapped_module.", "")
834
+ id_to_fqn[id] = fqn
835
+ new_param_names.append(fqn)
836
+ group["param_names"] = new_param_names
837
+ group["params"] = new_param_names
838
+ for id in list(optim_state_dict["state"].keys()):
839
+ optim_state_dict["state"][id_to_fqn[id]] = optim_state_dict["state"].pop(id)
840
+ else:
841
+ # Otherwise we still want to clean up the param names to remove the "_fsdp_wrapped_module." prefix.
842
+ for group in optim_state_dict["param_groups"]:
843
+ group["param_names"] = [fqn.replace("_fsdp_wrapped_module.", "") for fqn in group["param_names"]]
844
+ group["params"] = [fqn.replace("_fsdp_wrapped_module.", "") for fqn in group["params"]]
845
+ assert group["param_names"] == group["params"]
846
+ for key in list(optim_state_dict["state"].keys()):
847
+ optim_state_dict["state"][key.replace("_fsdp_wrapped_module.", "")] = optim_state_dict[
848
+ "state"
849
+ ].pop(key)
850
+
851
+ # Now we can transform the state dict by renaming parameters according to `og_keys_to_new`.
852
+ # First fix param names in the state.
853
+ for og_key, new_keys in og_keys_to_new.items():
854
+ og_state = optim_state_dict["state"].pop(og_key, None)
855
+ if og_state is None:
856
+ continue
857
+ for i, new_key in enumerate(new_keys):
858
+ if i == len(new_keys) - 1:
859
+ optim_state_dict["state"][new_key] = og_state
860
+ else:
861
+ optim_state_dict["state"][new_key] = deepcopy(og_state)
862
+ # Now fix param names in the param groups.
863
+ for group in optim_state_dict["param_groups"]:
864
+ og_names = group["params"]
865
+ new_names = []
866
+ for og_key in og_names:
867
+ for new_key in og_keys_to_new[og_key]:
868
+ new_names.append(new_key)
869
+ group["params"] = new_names
870
+ group["param_names"] = new_names
871
+
872
+ return optim_state_dict
873
+
874
+ def load_checkpoint(
875
+ self,
876
+ load_path: PathOrStr,
877
+ *,
878
+ local_cache: Optional[PathOrStr] = None,
879
+ load_optimizer_state: bool = True,
880
+ device: Optional[torch.device] = None,
881
+ ) -> Tuple[Dict[str, torch.Tensor], Optional[Dict[str, Any]]]:
882
+ device = device if device is not None else torch.device("cpu")
883
+ model_state = load_state_dict(load_path, "model.pt", local_cache=local_cache, map_location=device) # type: ignore
884
+ optim_state = None
885
+ if load_optimizer_state:
886
+ optim_state = load_state_dict(load_path, "optim.pt", local_cache=local_cache, map_location=device) # type: ignore
887
+ return model_state, optim_state
888
+
889
+
890
+ class TorchNewStyleShardedCheckpointer(Checkpointer):
891
+ """
892
+ A sharded :class:`Checkpointer` that uses PyTorch's new distributed checkpointing functionality.
893
+ """
894
+
895
+ def save_checkpoint(
896
+ self,
897
+ dir: PathOrStr,
898
+ dist_model: nn.Module,
899
+ optim: Optimizer,
900
+ trainer_state: Dict[str, Any],
901
+ *,
902
+ upload_to: Optional[str] = None,
903
+ ) -> None:
904
+ assert isinstance(
905
+ dist_model, FSDP
906
+ ), f"{self.__class__.__name__} is being called to save a model where `distributed_strategy` is not FSDP."
907
+ with self._temporary_wd(dir) as checkpoint_dir:
908
+ # Save model and optim state.
909
+ save_fsdp_model_and_optim_state(
910
+ checkpoint_dir,
911
+ dist_model,
912
+ optim,
913
+ upload_to=upload_to,
914
+ save_overwrite=self.cfg.save_overwrite,
915
+ )
916
+
917
+ # Save trainer state.
918
+ log.info("Saving trainer state...")
919
+ save_state_dict(
920
+ checkpoint_dir,
921
+ f"train/rank{get_global_rank()}.pt",
922
+ trainer_state,
923
+ upload_to=upload_to,
924
+ save_overwrite=self.cfg.save_overwrite,
925
+ )
926
+
927
+ # Save config.
928
+ self._save_config(checkpoint_dir, upload_to=upload_to)
929
+
930
+ def restore_checkpoint(
931
+ self,
932
+ load_path: PathOrStr,
933
+ dist_model: nn.Module,
934
+ optim: Optimizer,
935
+ *,
936
+ local_cache: Optional[PathOrStr] = None,
937
+ load_optimizer_state: bool = True,
938
+ ) -> Dict[str, Any]:
939
+ # Load model and optimizer state in place.
940
+ log.info("Loading model and optimizer state...")
941
+ assert isinstance(
942
+ dist_model, FSDP
943
+ ), f"{self.__class__.__name__} is being called to load a model where `distributed_strategy` is not FSDP."
944
+
945
+ load_fsdp_model_and_optim_state(
946
+ load_path,
947
+ dist_model,
948
+ optim,
949
+ local_cache=local_cache,
950
+ load_optimizer_state=load_optimizer_state,
951
+ )
952
+
953
+ # Load trainer state dict.
954
+ log.info("Loading trainer state...")
955
+ try:
956
+ trainer_state = load_state_dict(
957
+ load_path, f"train/rank{get_global_rank()}.pt", local_cache=local_cache
958
+ )
959
+ except FileNotFoundError:
960
+ # Fall back to rank 0 train state.
961
+ # This can happen when we're restoring a checkpoint with a different world size.
962
+ trainer_state = load_state_dict(load_path, "train/rank0.pt", local_cache=local_cache)
963
+ barrier()
964
+ return trainer_state
965
+
966
+
967
+ class TorchLegacyShardedCheckpointer(Checkpointer):
968
+ """
969
+ A sharded :class:`Checkpointer` that just uses `torch.save()` with extra logic for handling FSDP model
970
+ and optim state.
971
+
972
+ The world size must be kept consistent when using this checkpointer.
973
+ """
974
+
975
+ def __init__(self, cfg: TrainConfig, thread_count: Optional[int] = None, use_shared_mem_impl: bool = False):
976
+ super().__init__(cfg, thread_count)
977
+ self.use_shared_mem_impl = use_shared_mem_impl
978
+
979
+ def save_checkpoint(
980
+ self,
981
+ dir: PathOrStr,
982
+ dist_model: nn.Module,
983
+ optim: Optimizer,
984
+ trainer_state: Dict[str, Any],
985
+ *,
986
+ upload_to: Optional[str] = None,
987
+ ) -> None:
988
+ assert isinstance(
989
+ dist_model, FSDP
990
+ ), f"{self.__class__.__name__} is being called to save a model where `distributed_strategy` is not FSDP."
991
+ with self._temporary_wd(dir) as checkpoint_dir:
992
+ with FSDP.state_dict_type(
993
+ dist_model,
994
+ state_dict_type=StateDictType.SHARDED_STATE_DICT,
995
+ state_dict_config=ShardedStateDictConfig(offload_to_cpu=True),
996
+ optim_state_dict_config=ShardedOptimStateDictConfig(offload_to_cpu=True),
997
+ ):
998
+ state_dict = {
999
+ "model": dist_model.state_dict(),
1000
+ "optim": FSDP.optim_state_dict(dist_model, optim),
1001
+ **trainer_state,
1002
+ }
1003
+ save_state_dict(
1004
+ checkpoint_dir,
1005
+ f"rank{get_global_rank()}.pt",
1006
+ state_dict,
1007
+ upload_to=upload_to,
1008
+ save_overwrite=self.cfg.save_overwrite,
1009
+ )
1010
+
1011
+ # Save config.
1012
+ self._save_config(checkpoint_dir, upload_to=upload_to)
1013
+
1014
+ def restore_checkpoint(
1015
+ self,
1016
+ load_path: PathOrStr,
1017
+ dist_model: nn.Module,
1018
+ optim: Optimizer,
1019
+ *,
1020
+ local_cache: Optional[PathOrStr] = None,
1021
+ load_optimizer_state: bool = True,
1022
+ ) -> Dict[str, Any]:
1023
+ assert isinstance(
1024
+ dist_model, FSDP
1025
+ ), f"{self.__class__.__name__} is being called to load a model where `distributed_strategy` is not FSDP."
1026
+ with FSDP.state_dict_type(
1027
+ dist_model,
1028
+ state_dict_type=StateDictType.SHARDED_STATE_DICT,
1029
+ state_dict_config=ShardedStateDictConfig(offload_to_cpu=True),
1030
+ optim_state_dict_config=ShardedOptimStateDictConfig(offload_to_cpu=True),
1031
+ ):
1032
+ # Deserialize state dict.
1033
+ state_dict = load_state_dict(
1034
+ load_path, f"rank{get_global_rank()}.pt", local_cache=local_cache, map_location="cpu"
1035
+ )
1036
+
1037
+ # Load model and optimizer state.
1038
+ log.info("Loading model state...")
1039
+ dist_model.load_state_dict(state_dict["model"])
1040
+ del state_dict["model"]
1041
+ if load_optimizer_state:
1042
+ log.info("Loading optimizer state...")
1043
+ load_fsdp_optim_state(dist_model, optim, state_dict["optim"])
1044
+ del state_dict["optim"]
1045
+
1046
+ barrier()
1047
+ return state_dict
1048
+
1049
+ def unshard_checkpoint(
1050
+ self,
1051
+ load_path: PathOrStr,
1052
+ *,
1053
+ local_cache: Optional[PathOrStr] = None,
1054
+ load_optimizer_state: bool = True,
1055
+ load_trainer_state: bool = True,
1056
+ device: Optional[torch.device] = None,
1057
+ ) -> Tuple[Dict[str, torch.Tensor], Optional[Dict[str, Any]], Optional[Dict[str, Any]]]:
1058
+ assert local_cache is None, "this method currently only supports local files"
1059
+ full_state_dict = self._unshard(load_path, device or torch.device("cpu"), skip_keys={"rng"})
1060
+ model_state = full_state_dict.pop("model")
1061
+ optim_state = full_state_dict.pop("optim")
1062
+ return (
1063
+ model_state,
1064
+ optim_state if load_optimizer_state else None,
1065
+ full_state_dict if load_trainer_state else None,
1066
+ )
1067
+
1068
+ def _copy_sharded_tensors_to_shared_mem(self, state: Dict, world_size: int, rank: int, key: Tuple):
1069
+ key = tuple() if key is None else key
1070
+ if isinstance(state, (list, tuple, set)):
1071
+ for i, sub_state in enumerate(state):
1072
+ self._copy_sharded_tensors_to_shared_mem(sub_state, world_size, rank, key + (i,))
1073
+ elif isinstance(state, dict):
1074
+ for name in state.keys():
1075
+ self._copy_sharded_tensors_to_shared_mem(state[name], world_size, rank, key + (name,))
1076
+ elif isinstance(state, ShardedTensor):
1077
+ self._copy_sharded_tensor_to_shared_mem(state, world_size, rank, key)
1078
+ return
1079
+ else:
1080
+ return
1081
+
1082
+ def _get_shard_placement_and_rank_sizes(
1083
+ self, shards_metadata: List[ShardMetadata], world_size: int
1084
+ ) -> Tuple[Dict[ShardMetadata, Tuple[int, int]], List[int]]:
1085
+ def shard_size(shard_md):
1086
+ return reduce((lambda x, y: x * y), shard_md.shard_sizes) # type: ignore[attr-defined]
1087
+
1088
+ rank_sizes = [0 for _ in range(world_size)]
1089
+ shard_placement: Dict[ShardMetadata, Tuple[int, int]] = {}
1090
+ for shard_md in shards_metadata:
1091
+ shard_rank = cast(_remote_device, shard_md.placement).rank()
1092
+ assert shard_rank is not None
1093
+ if shard_rank >= world_size:
1094
+ raise RuntimeError(f"Shard rank {shard_rank} exceeds world size {world_size}")
1095
+
1096
+ shard_placement[shard_md] = (shard_rank, rank_sizes[shard_rank])
1097
+ rank_sizes[shard_rank] += shard_size(shard_md)
1098
+
1099
+ return shard_placement, rank_sizes
1100
+
1101
+ def _copy_sharded_tensor_to_shared_mem(
1102
+ self, sharded_tensor: ShardedTensor, world_size: int, rank: int, key: Tuple
1103
+ ) -> Any:
1104
+ shard0_md = sharded_tensor.metadata()
1105
+ shard_placement, rank_sizes = self._get_shard_placement_and_rank_sizes(
1106
+ shard0_md.shards_metadata, world_size
1107
+ )
1108
+
1109
+ rank_size = rank_sizes[rank]
1110
+ assert rank_size >= 0
1111
+ if rank_size == 0:
1112
+ return
1113
+
1114
+ assert shard0_md.tensor_properties.dtype == torch.float32, "Expected sharded tensor to be fp32"
1115
+ numpy_type = np.float32
1116
+
1117
+ sharded_memory_name = "-".join(key + (str(rank),))
1118
+
1119
+ shm = shared_memory.SharedMemory(
1120
+ create=True, size=rank_size * np.dtype(numpy_type).itemsize, name=sharded_memory_name
1121
+ )
1122
+ np_arr = np.ndarray((rank_size,), dtype=numpy_type, buffer=shm.buf)
1123
+
1124
+ for local_shard in sharded_tensor.local_shards():
1125
+ shard_rank = cast(_remote_device, local_shard.metadata.placement).rank()
1126
+ assert shard_rank == rank
1127
+
1128
+ src = local_shard.tensor.flatten()
1129
+ shard_offset = shard_placement[local_shard.metadata][1]
1130
+
1131
+ np_arr[shard_offset : shard_offset + src.numel()] = src.numpy()
1132
+
1133
+ shm.close()
1134
+
1135
+ def _copy_sharded_data_to_shared_mem(self, world_size: int, shard_filepath: Path):
1136
+ shard_number = int(shard_filepath.name[4:-3])
1137
+ log.info("Starting unsharding shard number %d to shared memory", shard_number)
1138
+
1139
+ with self._patch_sharded_tensor_load():
1140
+ shard = torch.load(shard_filepath, map_location="cpu")
1141
+ log.debug("Done loading shard number %d", shard_number)
1142
+
1143
+ self._copy_sharded_tensors_to_shared_mem(
1144
+ shard, world_size, shard_number, (str(shard_filepath.parent).replace("/", "_"),)
1145
+ )
1146
+ log.info("Done unsharding shard number %d to shared memory", shard_number)
1147
+
1148
+ def _unshard_using_sharded_mem(
1149
+ self, state: Any, world_size: int, device: torch.device, shard_dir: PathOrStr
1150
+ ) -> Any:
1151
+ return self._unshard_state_using_shared_mem(state, world_size, device, (str(shard_dir).replace("/", "_"),))
1152
+
1153
+ def _unshard_state_using_shared_mem(
1154
+ self, state: Any, world_size: int, device: torch.device, key: Tuple
1155
+ ) -> Any:
1156
+ if isinstance(state, (list, tuple, set)):
1157
+ return state.__class__(
1158
+ self._unshard_state_using_shared_mem(sub_state, world_size, device, key + (i,))
1159
+ for i, sub_state in enumerate(state)
1160
+ )
1161
+ elif isinstance(state, dict):
1162
+ return {
1163
+ name: self._unshard_state_using_shared_mem(state[name], world_size, device, key + (name,))
1164
+ for name in state.keys()
1165
+ }
1166
+ elif isinstance(state, ShardedTensor):
1167
+ return self._unshard_tensor_using_shared_mem(state, world_size, device, key)
1168
+ elif isinstance(state, torch.Tensor):
1169
+ return state.to(device=device)
1170
+ else:
1171
+ return state
1172
+
1173
+ def _unshard_tensor_using_shared_mem(
1174
+ self, sharded_tensor: ShardedTensor, world_size: int, device: torch.device, key: Tuple
1175
+ ) -> torch.Tensor:
1176
+ shard0_md = sharded_tensor.metadata()
1177
+
1178
+ def shard_size(shard_md):
1179
+ return reduce((lambda x, y: x * y), shard_md.shard_sizes) # type: ignore[attr-defined]
1180
+
1181
+ shard_placement, rank_sizes = self._get_shard_placement_and_rank_sizes(
1182
+ shard0_md.shards_metadata, world_size
1183
+ )
1184
+
1185
+ assert shard0_md.tensor_properties.dtype == torch.float32, "Expected sharded tensor to be fp32"
1186
+ numpy_type = np.float32
1187
+
1188
+ out = torch.empty(
1189
+ *sharded_tensor.metadata().size, dtype=sharded_tensor.metadata().tensor_properties.dtype, device=device
1190
+ )
1191
+ dims = len(sharded_tensor.metadata().size)
1192
+ for shard_md, (rank, rank_offset) in shard_placement.items():
1193
+ if rank >= world_size:
1194
+ raise RuntimeError(f"Shard rank {rank} exceeds world size {world_size}")
1195
+
1196
+ sharded_memory_name = "-".join(key + (str(rank),))
1197
+ shm = shared_memory.SharedMemory(name=sharded_memory_name)
1198
+
1199
+ rank_size = rank_sizes[rank]
1200
+ assert rank_size >= 0
1201
+ if rank_size == 0:
1202
+ continue
1203
+
1204
+ np_arr = np.ndarray((rank_size,), dtype=numpy_type, buffer=shm.buf)
1205
+
1206
+ tensor = torch.from_numpy(np_arr)[rank_offset : rank_offset + shard_size(shard_md)]
1207
+ tensor = tensor.view(shard_md.shard_sizes)
1208
+
1209
+ out_narrow_view = out
1210
+ for dim in range(dims):
1211
+ out_narrow_view = out_narrow_view.narrow(
1212
+ dim,
1213
+ shard_md.shard_offsets[dim],
1214
+ shard_md.shard_sizes[dim],
1215
+ )
1216
+
1217
+ out_narrow_view.copy_(tensor)
1218
+
1219
+ shm.close()
1220
+ shm.unlink()
1221
+
1222
+ return out
1223
+
1224
+ @contextmanager
1225
+ def _patch_sharded_tensor_load(self):
1226
+ """
1227
+ Monkeypatch for torch's ShardedTensor, so we can unpickle without having torch.distributed set up.
1228
+ """
1229
+
1230
+ def _rebuild_from_type_v2_monkey(func, new_type, args, state):
1231
+ ret = func(*args)
1232
+ if type(ret) is not new_type:
1233
+ ret = ret.as_subclass(new_type)
1234
+
1235
+ # Shortcut the construction of ShardedTensor
1236
+ # This is in the top 5 of my worst hacks.
1237
+ if isinstance(ret, ShardedTensor):
1238
+ ret._local_shards, ret._metadata, _, ret._sharding_spec, ret._init_rrefs = state
1239
+ return ret
1240
+
1241
+ # The rest of this function ought to be in the top 5 of somebody else's worst hacks.
1242
+ # Tensor does define __setstate__ even though it doesn't define
1243
+ # __getstate__. So only use __setstate__ if it is NOT the one defined
1244
+ # on Tensor
1245
+ if getattr(ret.__class__, "__setstate__", torch.Tensor.__setstate__) is not torch.Tensor.__setstate__:
1246
+ ret.__setstate__(state)
1247
+ else:
1248
+ ret = torch._utils._set_obj_state(ret, state)
1249
+ return ret
1250
+
1251
+ original_rebuild_from_type_v2 = torch._tensor._rebuild_from_type_v2
1252
+ try:
1253
+ torch._tensor._rebuild_from_type_v2 = _rebuild_from_type_v2_monkey
1254
+ yield
1255
+ finally:
1256
+ torch._tensor._rebuild_from_type_v2 = original_rebuild_from_type_v2
1257
+
1258
+ def _unshard_using_shared_memory(
1259
+ self, input_dir: PathOrStr, device: torch.device, skip_keys: Optional[Set[str]] = None
1260
+ ):
1261
+ """
1262
+ This unsharding implementation consists of:
1263
+
1264
+ 1. Loading each shard on a separate process and copying their sharded tensors to shared memory.
1265
+ 2. Loading 1 shard on the main process as a base unsharded object.
1266
+ 3. Using the sharded tensors in shared memory to populate the base unsharded object.
1267
+
1268
+ This implementation is an alternative to a prior implementation that instead loaded
1269
+ all shards using threads, because that implementation turned out to
1270
+ be extremely slow (e.g. 6+ hours) sometimes when the world size was 1024.
1271
+ The current implementation is slower than the old one in many scenarios,
1272
+ but is significantly faster in the above mentioned case (e.g. 30 minutes)
1273
+ if there are enough CPUs.
1274
+
1275
+ We keep the other implementation since this once can be more unreliable,
1276
+ likely due to its dependence on a large amount of shared memory.
1277
+ """
1278
+
1279
+ input_dir = Path(input_dir)
1280
+ skip_keys = skip_keys or set()
1281
+
1282
+ shard_filepaths = list(input_dir.glob("rank*.pt"))
1283
+ world_size = len(shard_filepaths)
1284
+ if world_size == 0:
1285
+ raise RuntimeError("No shards found for unsharding")
1286
+
1287
+ log.info("Number of shards: %d", world_size)
1288
+ shard_size_gb = shard_filepaths[0].stat().st_size / (1024 * 1024 * 1024)
1289
+ min_ram_required_estimate_gb = shard_size_gb * world_size
1290
+ log.info(
1291
+ "Shards are %.2fGB each, at least %.2fGB RAM is required", shard_size_gb, min_ram_required_estimate_gb
1292
+ )
1293
+
1294
+ log.info("Copying sharded tensors to shared memory using multiple processes")
1295
+ # Copy sharded data to shared memory using multiple processes, so this process can load
1296
+ # from memory rather than disk. We spawn a new process instead of forking since shared memory
1297
+ # appears to get deleted when forked processes end for some reason.
1298
+ executor = ProcessPoolExecutor(
1299
+ mp_context=mp.get_context("spawn"), initializer=util.prepare_cli_environment
1300
+ )
1301
+ futures = []
1302
+ for shard_filepath in shard_filepaths:
1303
+ shard_rank = int(shard_filepath.name[4:-3])
1304
+
1305
+ if shard_rank >= world_size:
1306
+ raise RuntimeError(
1307
+ f"Shard rank {shard_rank} of file {shard_filepath} exceeds world size {world_size}"
1308
+ )
1309
+
1310
+ futures.append(executor.submit(self._copy_sharded_data_to_shared_mem, world_size, shard_filepath))
1311
+
1312
+ for f in as_completed(futures):
1313
+ f.result()
1314
+ executor.shutdown()
1315
+
1316
+ log.info("Loading a shard on the main process to be unsharded state")
1317
+ with self._patch_sharded_tensor_load():
1318
+ state = torch.load(shard_filepaths[0], map_location="cpu")
1319
+
1320
+ for key in skip_keys:
1321
+ if key in state:
1322
+ del state[key]
1323
+
1324
+ log.info("Unsharding from %d shards ...", world_size)
1325
+ return self._unshard_using_sharded_mem(state, world_size, device, input_dir)
1326
+
1327
+ def _unshard(self, input_dir: PathOrStr, device: torch.device, skip_keys: Optional[Set[str]] = None):
1328
+ if self.use_shared_mem_impl:
1329
+ return self._unshard_using_shared_memory(input_dir, device, skip_keys)
1330
+
1331
+ input_dir = Path(input_dir)
1332
+ skip_keys = skip_keys or set()
1333
+
1334
+ with self._patch_sharded_tensor_load():
1335
+ # We load in threads because it's faster.
1336
+ executor = ThreadPoolExecutor()
1337
+ shards_dict = {}
1338
+ for shard_name in input_dir.glob("rank*.pt"):
1339
+ log.info("Loading %s ...", shard_name)
1340
+ shard_number = int(shard_name.name[4:-3]) # shard names look like "rankXX.pt"
1341
+ shards_dict[shard_number] = executor.submit(torch.load, shard_name, map_location="cpu")
1342
+ shards = [None] * len(shards_dict)
1343
+ for rank, shard_future in shards_dict.items():
1344
+ shard = shard_future.result()
1345
+ for key in skip_keys:
1346
+ if key in shard:
1347
+ del shard[key]
1348
+ shards[rank] = shard
1349
+ assert all(shard is not None for shard in shards)
1350
+ executor.shutdown()
1351
+ del shards_dict
1352
+
1353
+ log.info("Unsharding from %d shards ...", len(shards))
1354
+
1355
+ unsharded_state_dict = self._unshard_object(shards, device=device)
1356
+ # At this point in time we need 2x memory :-(
1357
+ del shards
1358
+
1359
+ return unsharded_state_dict
1360
+
1361
+ def _unshard_object(self, os: List[Any], device: torch.device) -> Any:
1362
+ rank0_item = os[0]
1363
+ assert all(type(o) is type(rank0_item) for o in os)
1364
+ if isinstance(rank0_item, str):
1365
+ assert all(o == rank0_item for o in os)
1366
+ return rank0_item
1367
+ elif isinstance(rank0_item, (list, tuple, set)):
1368
+ assert all(len(o) == len(rank0_item) for o in os)
1369
+ return rank0_item.__class__(self._unshard_object(o, device=device) for o in zip(*os))
1370
+ elif isinstance(rank0_item, dict):
1371
+ assert all(o.keys() == rank0_item.keys() for o in os)
1372
+ return {key: self._unshard_object([o[key] for o in os], device=device) for key in rank0_item.keys()}
1373
+ elif isinstance(rank0_item, ShardedTensor):
1374
+ return self._gather(os, device=device)
1375
+ else:
1376
+ assert all(self._objects_are_equal(o, rank0_item) for o in os)
1377
+ return rank0_item
1378
+
1379
+ def _gather(self, shards: List[ShardedTensor], device: torch.device) -> torch.Tensor:
1380
+ world_size = len(shards)
1381
+ shard0_md = shards[0].metadata()
1382
+ # Make sure all shards agree on the metadata
1383
+ assert all(shard.metadata() == shard0_md for shard in shards)
1384
+ # Make sure the nth shard expects to be the nth shard.
1385
+ assert all(
1386
+ shard_md.placement.rank() == rank # type: ignore
1387
+ for rank, shard_md in enumerate(shard0_md.shards_metadata)
1388
+ )
1389
+
1390
+ def shard_size(shard_md):
1391
+ return reduce((lambda x, y: x * y), shard_md.shard_sizes) # type: ignore[attr-defined]
1392
+
1393
+ rank_sizes = [0 for _ in range(world_size)]
1394
+ max_rank_size = 0
1395
+ shard_placement: Dict[ShardMetadata, Tuple[int, int]] = {}
1396
+ for shard_md in shard0_md.shards_metadata:
1397
+ shard_rank = cast(_remote_device, shard_md.placement).rank()
1398
+ assert shard_rank is not None
1399
+
1400
+ shard_placement[shard_md] = (shard_rank, rank_sizes[shard_rank])
1401
+ rank_sizes[shard_rank] += shard_size(shard_md)
1402
+ max_rank_size = max(max_rank_size, rank_sizes[shard_rank])
1403
+
1404
+ gather_list: List[torch.Tensor] = [torch.empty((max_rank_size,)) for _ in range(world_size)]
1405
+
1406
+ datas = []
1407
+ with torch.no_grad():
1408
+ for shard in shards:
1409
+ data = torch.empty(max_rank_size)
1410
+
1411
+ for local_shard in shard.local_shards():
1412
+ src = local_shard.tensor.flatten()
1413
+ shard_offset = shard_placement[local_shard.metadata][1]
1414
+ data[shard_offset : shard_offset + src.numel()].copy_(src)
1415
+
1416
+ datas.append(data)
1417
+
1418
+ # torch.gather in a nutshell
1419
+ for rank, data in enumerate(datas):
1420
+ gather_list[rank].copy_(data)
1421
+
1422
+ full_size = shard0_md.size
1423
+ out = torch.empty(*full_size, dtype=shard0_md.tensor_properties.dtype, device=device)
1424
+ dims = len(full_size)
1425
+ for shard_md in shard0_md.shards_metadata:
1426
+ rank, rank_offset = shard_placement[shard_md]
1427
+ tensor = gather_list[rank]
1428
+ tensor = tensor[rank_offset : rank_offset + shard_size(shard_md)]
1429
+ tensor = tensor.view(shard_md.shard_sizes)
1430
+
1431
+ out_narrow_view = out
1432
+ for dim in range(dims):
1433
+ out_narrow_view = out_narrow_view.narrow(
1434
+ dim,
1435
+ shard_md.shard_offsets[dim],
1436
+ shard_md.shard_sizes[dim],
1437
+ )
1438
+
1439
+ out_narrow_view.copy_(tensor)
1440
+
1441
+ return out
1442
+
1443
+ def _objects_are_equal(self, a: Any, b: Any) -> bool:
1444
+ if type(a) is not type(b):
1445
+ return False
1446
+ if isinstance(a, np.ndarray):
1447
+ return np.array_equal(a, b)
1448
+ elif isinstance(a, torch.Tensor):
1449
+ return torch.equal(a, b)
1450
+ else:
1451
+ return a == b
1452
+
1453
+
1454
+ @dataclass
1455
+ class _LocalShardedCheckpointerMetadata(BaseConfig):
1456
+ world_size: int = field(default_factory=get_world_size)
1457
+
1458
+
1459
+ @dataclass
1460
+ class _FlatParamShard:
1461
+ full_shape: torch.Size
1462
+ shard_offsets: Tuple[int, int]
1463
+ shard_data: Optional[torch.Tensor]
1464
+
1465
+ def copy_into(self, full_tensor: torch.Tensor) -> None:
1466
+ assert self.shard_data is not None
1467
+ full_tensor_shard_view = full_tensor.view(-1)[self.shard_offsets[0] : self.shard_offsets[1] + 1]
1468
+ assert self.shard_data.shape == full_tensor_shard_view.shape
1469
+ full_tensor_shard_view.copy_(self.shard_data)
1470
+
1471
+
1472
+ class LocalShardedCheckpointer(Checkpointer):
1473
+ """
1474
+ A sharded :class:`Checkpointer` that directly saves the local FSDP flat params data.
1475
+ The optimizer state is saved directly with `torch.save()` without reformatting via FSDP methods.
1476
+
1477
+ The world size must be kept consistent when using this checkpointer. However, you can easily
1478
+ reconstruct a full unsharded model and/or optimizer state dictionary from a single Python process
1479
+ using :meth:`unshard_checkpoint()` (no distributed initialization required).
1480
+ """
1481
+
1482
+ # These correspond to metadata attributes on `torch.distributed.fsdp.flat_param.FlatParameter`.
1483
+ _FLAT_PARAM_METADATA_TO_SAVE = (
1484
+ "_fqns",
1485
+ "_shard_param_offsets",
1486
+ "_shard_indices",
1487
+ "_numels",
1488
+ "_numels_with_padding",
1489
+ "_shapes",
1490
+ "_shard_numel_padded",
1491
+ "_shard_param_infos",
1492
+ )
1493
+
1494
+ def _fsdp_modules(self, fsdp_model: FSDP) -> List[Tuple[str, FSDP]]:
1495
+ """
1496
+ Returns a list of FSDP modules with their FQN.
1497
+ """
1498
+ modules = []
1499
+ for name, module in fsdp_model.named_modules():
1500
+ if isinstance(module, FSDP):
1501
+ modules.append((name, module))
1502
+ return modules
1503
+
1504
+ def _prepare_fsdp_model(self, fsdp_model: FSDP) -> None:
1505
+ from torch.distributed.fsdp._runtime_utils import _lazy_init
1506
+
1507
+ # TODO (epwalsh): I'm not sure if this is necessary, but this is what PyTorch does before saving/loading
1508
+ # an FSDP state dict through the built-in methods.
1509
+ if torch.cuda.is_available():
1510
+ torch.cuda.synchronize()
1511
+ _lazy_init(fsdp_model, fsdp_model)
1512
+
1513
+ def _fsdp_handles(self, fsdp_model: FSDP) -> List[FlatParamHandle]:
1514
+ if version.parse(torch.__version__) < version.parse("2.1.0"):
1515
+ return fsdp_model._handles # type: ignore
1516
+ elif version.parse(torch.__version__) < version.parse("2.3.0"):
1517
+ # Handle could be None if the FSDP wrapper doesn't manage any parameters.
1518
+ if hasattr(fsdp_model, "_handle") and fsdp_model._handle is not None:
1519
+ return [fsdp_model._handle] # type: ignore
1520
+ else:
1521
+ return []
1522
+ else:
1523
+ # Need to verify FSDP internals with newer versions.
1524
+ raise NotImplementedError
1525
+
1526
+ @torch.no_grad()
1527
+ def _get_flat_param_state_to_save(self, fsdp_model: FSDP) -> Dict[str, Any]:
1528
+ self._prepare_fsdp_model(fsdp_model)
1529
+ module_data = []
1530
+ for module_fqn, fsdp_module in self._fsdp_modules(fsdp_model):
1531
+ handle_data = []
1532
+ for handle in self._fsdp_handles(fsdp_module):
1533
+ data: Dict[str, Any] = {}
1534
+ # This is a `FlatParameter` instance.
1535
+ # See `torch.distributed.fsdp.flat_param` for the API.
1536
+ flat_param = handle.flat_param
1537
+ data["flat_param.data"] = flat_param.detach()
1538
+ for key in self._FLAT_PARAM_METADATA_TO_SAVE:
1539
+ if hasattr(flat_param, key):
1540
+ data[f"flat_param.{key}"] = getattr(flat_param, key)
1541
+ handle_data.append(data)
1542
+ module_data.append({"handles": handle_data, "name": module_fqn})
1543
+ return {"modules": module_data}
1544
+
1545
+ @torch.no_grad()
1546
+ def _load_flat_param_state(self, fsdp_model: FSDP, model_state: Dict[str, Any]):
1547
+ """Load the state produced from `self._get_flat_param_state_to_save()`."""
1548
+ self._prepare_fsdp_model(fsdp_model)
1549
+ fsdp_modules = self._fsdp_modules(fsdp_model)
1550
+ assert len(model_state["modules"]) == len(fsdp_modules)
1551
+ for (_, fsdp_module), module_data in zip(fsdp_modules, model_state["modules"]):
1552
+ handles = self._fsdp_handles(fsdp_module)
1553
+ assert len(handles) == len(module_data["handles"])
1554
+ for handle, data in zip(handles, module_data["handles"]):
1555
+ flat_param = handle.flat_param
1556
+ # Make sure metadata matches.
1557
+ for key in self._FLAT_PARAM_METADATA_TO_SAVE:
1558
+ if hasattr(flat_param, key):
1559
+ assert getattr(flat_param, key) == data[f"flat_param.{key}"]
1560
+ # Load the flat sharded data.
1561
+ flat_param.copy_(data["flat_param.data"])
1562
+
1563
+ def _save_metadata(self, dir: PathOrStr, *, upload_to: Optional[str] = None) -> None:
1564
+ if get_fs_local_rank() == 0:
1565
+ log.info("Saving metadata...")
1566
+ metadata = _LocalShardedCheckpointerMetadata()
1567
+ metadata.save(metadata_path := Path(dir) / "metadata.yaml")
1568
+ if upload_to is not None and get_global_rank() == 0:
1569
+ upload_target = f"{upload_to}/metadata.yaml"
1570
+ log.info(f"Uploading {metadata_path} to {upload_target}")
1571
+ upload(metadata_path, upload_target, save_overwrite=self.cfg.save_overwrite)
1572
+
1573
+ def _load_metadata(
1574
+ self, load_path: PathOrStr, *, local_cache: Optional[PathOrStr] = None
1575
+ ) -> _LocalShardedCheckpointerMetadata:
1576
+ metadata_path = resource_path(load_path, "metadata.yaml", local_cache=local_cache)
1577
+ return _LocalShardedCheckpointerMetadata.load(metadata_path)
1578
+
1579
+ def save_checkpoint(
1580
+ self,
1581
+ dir: PathOrStr,
1582
+ dist_model: nn.Module,
1583
+ optim: Optimizer,
1584
+ trainer_state: Dict[str, Any],
1585
+ *,
1586
+ upload_to: Optional[str] = None,
1587
+ ) -> None:
1588
+ assert isinstance(
1589
+ dist_model, FSDP
1590
+ ), f"{self.__class__.__name__} is being called to save a model where `distributed_strategy` is not FSDP."
1591
+
1592
+ with self._temporary_wd(dir) as checkpoint_dir:
1593
+ # Gather local FSDP flat params data to save.
1594
+ # We also save some flat param metadata like the corresponding fully qualified names (fqns)
1595
+ # of each original parameter so we can validate that the sharding is the same when loading
1596
+ # one of these checkpoints.
1597
+ log.info("Saving local FSDP flat params data...")
1598
+ save_state_dict(
1599
+ checkpoint_dir,
1600
+ f"model/rank{get_global_rank()}.pt",
1601
+ self._get_flat_param_state_to_save(dist_model),
1602
+ upload_to=upload_to,
1603
+ save_overwrite=self.cfg.save_overwrite,
1604
+ )
1605
+
1606
+ # Save optimizer state.
1607
+ log.info("Saving local optimizer state...")
1608
+ save_state_dict(
1609
+ checkpoint_dir,
1610
+ f"optim/rank{get_global_rank()}.pt",
1611
+ optim.state_dict(),
1612
+ upload_to=upload_to,
1613
+ save_overwrite=self.cfg.save_overwrite,
1614
+ )
1615
+
1616
+ # Save trainer state.
1617
+ log.info("Saving trainer state...")
1618
+ save_state_dict(
1619
+ checkpoint_dir,
1620
+ f"train/rank{get_global_rank()}.pt",
1621
+ trainer_state,
1622
+ upload_to=upload_to,
1623
+ save_overwrite=self.cfg.save_overwrite,
1624
+ )
1625
+
1626
+ # Save metadata.
1627
+ self._save_metadata(checkpoint_dir, upload_to=upload_to)
1628
+
1629
+ # Save config. We do this last b/c the presence of a config in a remote checkpoint
1630
+ # "directory" indicates that the folder is valid, as a opposed to a partially
1631
+ # uploaded checkpoint directory that failed before completing.
1632
+ self._save_config(checkpoint_dir, upload_to=upload_to)
1633
+
1634
+ def restore_checkpoint(
1635
+ self,
1636
+ load_path: PathOrStr,
1637
+ dist_model: nn.Module,
1638
+ optim: Optimizer,
1639
+ *,
1640
+ local_cache: Optional[PathOrStr] = None,
1641
+ load_optimizer_state: bool = True,
1642
+ ) -> Dict[str, Any]:
1643
+ # Load metadata and make sure checkpoint is compatible.
1644
+ metadata = self._load_metadata(load_path, local_cache=local_cache)
1645
+ assert metadata.world_size == get_world_size()
1646
+
1647
+ # Load local FSDP flat param data.
1648
+ log.info("Loading local FSDP flat params data...")
1649
+ assert isinstance(
1650
+ dist_model, FSDP
1651
+ ), f"{self.__class__.__name__} is being called to load a model where `distributed_strategy` is not FSDP."
1652
+
1653
+ model_state = load_state_dict(
1654
+ load_path, f"model/rank{get_global_rank()}.pt", local_cache=local_cache, map_location="cpu"
1655
+ )
1656
+ self._load_flat_param_state(dist_model, model_state)
1657
+ del model_state
1658
+
1659
+ # Load local optim state.
1660
+ if load_optimizer_state:
1661
+ log.info("Loading local optimizer state...")
1662
+ optim_state = load_state_dict(
1663
+ load_path, f"optim/rank{get_global_rank()}.pt", local_cache=local_cache, map_location="cpu"
1664
+ )
1665
+ # HACK/TODO (epwalsh): When we use adaptive clipping we track the 'grad_norm_exp_avg' for every param
1666
+ # in every rank, and keep this in the optimizer state. But this causes issues when loading the
1667
+ # state since torch sees the state is non-empty for some params which would normally be empty,
1668
+ # and then assumes it should have all of the other state tensors for that param, which is doesn't.
1669
+ # So for now we just remove 'grad_norm_exp_avg' everywhere from the state, which resets that metric.
1670
+ # Not the end of the world but there's probably a better way around this without resetting
1671
+ # the metric.
1672
+ for param_id in list(optim_state["state"].keys()):
1673
+ state = optim_state["state"][param_id]
1674
+ if "grad_norm_exp_avg" in state:
1675
+ del state["grad_norm_exp_avg"]
1676
+ if len(state) == 0:
1677
+ del optim_state["state"][param_id]
1678
+ optim.load_state_dict(optim_state)
1679
+ del optim_state
1680
+
1681
+ # Load local trainer state.
1682
+ log.info("Loading local trainer state...")
1683
+ trainer_state = load_state_dict(load_path, f"train/rank{get_global_rank()}.pt", local_cache=local_cache)
1684
+ barrier()
1685
+ return trainer_state
1686
+
1687
+ def _iter_flat_param_shards(
1688
+ self, model_state: Dict[str, Any]
1689
+ ) -> Generator[Tuple[str, _FlatParamShard], None, None]:
1690
+ for module_data in model_state["modules"]:
1691
+ module_prefix = module_data["name"].replace("_fsdp_wrapped_module.", "")
1692
+ for handle in module_data["handles"]:
1693
+ flat_data = handle["flat_param.data"]
1694
+ if (num_padding := handle["flat_param._shard_numel_padded"]) > 0:
1695
+ # If there's padding in the flat param it should be on the right.
1696
+ assert (flat_data[-num_padding:] == 0).all()
1697
+ # NOTE: this changes depending on the torch version, but we don't do a version
1698
+ # check since we might be trying to unshard an old checkpoint that was stored
1699
+ # with a different torch version than we're currently running with.
1700
+ if "flat_param._shard_indices" in handle:
1701
+ # torch <=2.0.1
1702
+ param_start = handle["flat_param._shard_indices"][0]
1703
+ current_flat_index = 0
1704
+ for relative_fqn, full_shape, (offset_start, offset_end) in zip(
1705
+ handle["flat_param._fqns"][param_start:],
1706
+ handle["flat_param._shapes"][param_start:],
1707
+ handle["flat_param._shard_param_offsets"],
1708
+ ):
1709
+ root_fqn = relative_fqn if not module_prefix else f"{module_prefix}.{relative_fqn}"
1710
+ numel_shard = offset_end - offset_start + 1
1711
+ flat_param_shard = _FlatParamShard(
1712
+ full_shape=full_shape,
1713
+ shard_offsets=(offset_start, offset_end),
1714
+ shard_data=flat_data[current_flat_index : current_flat_index + numel_shard],
1715
+ )
1716
+ current_flat_index += numel_shard
1717
+ yield root_fqn, flat_param_shard
1718
+ else:
1719
+ # torch >=2.1.0
1720
+ for relative_fqn, full_shape, shard_param_info in zip(
1721
+ handle["flat_param._fqns"],
1722
+ handle["flat_param._shapes"],
1723
+ handle["flat_param._shard_param_infos"],
1724
+ ):
1725
+ if not shard_param_info.in_shard:
1726
+ continue
1727
+ root_fqn = relative_fqn if not module_prefix else f"{module_prefix}.{relative_fqn}"
1728
+ flat_param_shard = _FlatParamShard(
1729
+ full_shape=full_shape,
1730
+ shard_offsets=(
1731
+ shard_param_info.intra_param_start_idx,
1732
+ shard_param_info.intra_param_end_idx,
1733
+ ),
1734
+ shard_data=flat_data[
1735
+ shard_param_info.offset_in_shard : shard_param_info.offset_in_shard
1736
+ + shard_param_info.numel_in_shard
1737
+ ],
1738
+ )
1739
+ yield root_fqn, flat_param_shard
1740
+
1741
+ def unshard_checkpoint(
1742
+ self,
1743
+ load_path: PathOrStr,
1744
+ *,
1745
+ local_cache: Optional[PathOrStr] = None,
1746
+ load_optimizer_state: bool = True,
1747
+ load_trainer_state: bool = True,
1748
+ device: Optional[torch.device] = None,
1749
+ ) -> Tuple[Dict[str, torch.Tensor], Optional[Dict[str, Any]], Optional[Dict[str, Any]]]:
1750
+ device = device or torch.device("cpu")
1751
+ metadata = self._load_metadata(load_path, local_cache=local_cache)
1752
+
1753
+ # Gather paths model state, potentially downloading them.
1754
+ log.info("Gathering model state dicts...")
1755
+ model_state_paths = self._gather_state_dict_paths(
1756
+ load_path, "model", metadata.world_size, local_cache=local_cache
1757
+ )
1758
+
1759
+ # Load model state dicts one-by-one, materializing and populating the full parameters as we go.
1760
+ log.info("Materializing full parameters...")
1761
+ full_model_state: Dict[str, torch.Tensor] = {}
1762
+ # We keep a copy of the flat param metadata minus the actual tensors so we can reconstruct
1763
+ # the full optimizer state below without having to reload the model state dicts.
1764
+ flat_params_data: Dict[int, Dict[str, _FlatParamShard]] = defaultdict(dict)
1765
+ for rank, path in enumerate(model_state_paths):
1766
+ log.info(f"Loading shards from rank {rank}...")
1767
+ model_state = torch.load(path, map_location="cpu")
1768
+ for root_fqn, flat_param_shard in self._iter_flat_param_shards(model_state):
1769
+ if root_fqn not in full_model_state:
1770
+ log.info(
1771
+ f"Materializing full parameter '{root_fqn}' with shape {flat_param_shard.full_shape}..."
1772
+ )
1773
+ assert flat_param_shard.shard_data is not None
1774
+ full_model_state[root_fqn] = torch.empty(
1775
+ flat_param_shard.full_shape, dtype=flat_param_shard.shard_data.dtype, device=device
1776
+ )
1777
+ # Fill with NaNs so we can validate that the whole parameter has been populated
1778
+ # afterwards.
1779
+ full_model_state[root_fqn].fill_(torch.nan)
1780
+ # Copy over the local shard to the relevant part of the full parameter.
1781
+ full_param = full_model_state[root_fqn]
1782
+ log.info(f"Loading rank {rank} shard for '{root_fqn}'...")
1783
+ flat_param_shard.copy_into(full_param)
1784
+ flat_params_data[rank][root_fqn] = replace(flat_param_shard, shard_data=None)
1785
+
1786
+ log.info("Validating full parameters...")
1787
+ for key, tensor in full_model_state.items():
1788
+ if torch.isnan(tensor).any():
1789
+ raise ValueError(f"Parameter '{key}' contains NaNs, this is likely a bug with the unsharder")
1790
+
1791
+ trainer_state: Optional[Dict[str, Any]] = None
1792
+ if load_trainer_state:
1793
+ trainer_state = load_state_dict(load_path, "train/rank0.pt", local_cache=local_cache)
1794
+
1795
+ if not load_optimizer_state:
1796
+ return full_model_state, None, trainer_state
1797
+
1798
+ log.info("Gathering optim state dicts...")
1799
+ optim_state_paths = self._gather_state_dict_paths(
1800
+ load_path, "optim", metadata.world_size, local_cache=local_cache
1801
+ )
1802
+
1803
+ log.info("Materializing full optim state...")
1804
+ full_optim_state: Dict[str, Any] = {"state": defaultdict(dict)}
1805
+ fqn_to_id: Dict[str, int] = {}
1806
+ id_to_fqn: Dict[int, str] = {}
1807
+ for rank, path in enumerate(optim_state_paths):
1808
+ log.info(f"Loading sharded optim state from rank {rank}...")
1809
+ optim_state = torch.load(path, map_location="cpu")
1810
+
1811
+ # Initialize param groups.
1812
+ # We assume parameter groups are the same across all ranks.
1813
+ # The only thing that differs across ranks is the state for each local sharded param.
1814
+ if "param_groups" not in full_optim_state:
1815
+ full_optim_state["param_groups"] = optim_state["param_groups"]
1816
+ else:
1817
+ assert full_optim_state["param_groups"] == optim_state["param_groups"]
1818
+
1819
+ # Generate mapping of parameter FQNs to optimizer param IDs and vice-versa.
1820
+ if not fqn_to_id or not id_to_fqn:
1821
+ for group in full_optim_state["param_groups"]:
1822
+ for fqn, id in zip(group["param_names"], group["params"]):
1823
+ fqn = fqn.replace("_fsdp_wrapped_module.", "")
1824
+ fqn_to_id[fqn] = id
1825
+ id_to_fqn[id] = fqn
1826
+
1827
+ # Iterate over local shard state and copy into the full state.
1828
+ for id, shard_state in optim_state["state"].items():
1829
+ fqn = id_to_fqn[id]
1830
+ flat_param_shard = flat_params_data[rank].get(fqn) # type: ignore[assignment]
1831
+ full_state = full_optim_state["state"][id]
1832
+ for key, shard_value in shard_state.items():
1833
+ assert isinstance(shard_value, torch.Tensor)
1834
+ if shard_value.shape == torch.Size([]):
1835
+ # Add singleton tensors directly to full state. These should be the same across
1836
+ # all ranks.
1837
+ assert key in ("step", "grad_norm_exp_avg") # sanity check
1838
+ if key not in full_state:
1839
+ full_state[key] = shard_value.to(device)
1840
+ else:
1841
+ assert full_state[key] == shard_value
1842
+ else:
1843
+ # Otherwise we have a sharded param state.
1844
+ # If the corresponding full param state hasn't been materialized yet, do so now.
1845
+ assert flat_param_shard is not None, f"missing flat_params_data for {fqn} from rank {rank}"
1846
+ if key not in full_state:
1847
+ log.info(
1848
+ f"Materializing full state '{key}' for '{fqn}' with shape {flat_param_shard.full_shape}..."
1849
+ )
1850
+ full_state[key] = torch.empty(
1851
+ flat_param_shard.full_shape, dtype=shard_value.dtype, device=device
1852
+ )
1853
+ full_state_value = full_state[key]
1854
+
1855
+ # Copy over the local shard state to the relevant part of the full parameter state.
1856
+ log.info(f"Loading rank {rank} shard state of '{key}' for '{fqn}'...")
1857
+ replace(flat_param_shard, shard_data=shard_value).copy_into(full_state_value)
1858
+
1859
+ # Lastly, clean up the parameter names in param groups.
1860
+ for group in full_optim_state["param_groups"]:
1861
+ group["param_names"] = [n.replace("_fsdp_wrapped_module.", "") for n in group["param_names"]]
1862
+
1863
+ return full_model_state, full_optim_state, trainer_state
1864
+
1865
+ def _get_state_dict_path(
1866
+ self,
1867
+ load_path: PathOrStr,
1868
+ state_dict_type: str,
1869
+ rank: int,
1870
+ *,
1871
+ local_cache: Optional[PathOrStr] = None,
1872
+ progress=None,
1873
+ ) -> Tuple[int, Path]:
1874
+ fname = f"{state_dict_type}/rank{rank}.pt"
1875
+ return rank, resource_path(str(load_path).rstrip("/"), fname, local_cache=local_cache, progress=progress)
1876
+
1877
+ def _gather_state_dict_paths(
1878
+ self,
1879
+ load_path: PathOrStr,
1880
+ state_dict_type: str,
1881
+ world_size: int,
1882
+ *,
1883
+ local_cache: Optional[PathOrStr] = None,
1884
+ ) -> List[Path]:
1885
+ progress = get_progress_bar()
1886
+ with ThreadPoolExecutor(max_workers=self.thread_count) as executor:
1887
+ futures = []
1888
+ for rank in range(world_size):
1889
+ future = executor.submit(
1890
+ self._get_state_dict_path,
1891
+ load_path,
1892
+ state_dict_type,
1893
+ rank,
1894
+ local_cache=local_cache,
1895
+ progress=progress,
1896
+ )
1897
+ futures.append(future)
1898
+
1899
+ results: Dict[int, Path] = {}
1900
+ for future in as_completed(futures):
1901
+ rank, path = future.result()
1902
+ results[rank] = path
1903
+
1904
+ return [results[rank] for rank in range(world_size)]
1905
+
1906
+
1907
+ class OlmoCoreCheckpointer(Checkpointer):
1908
+ def save_checkpoint(
1909
+ self,
1910
+ dir: PathOrStr,
1911
+ dist_model: nn.Module,
1912
+ optim: Optimizer,
1913
+ trainer_state: Dict[str, Any],
1914
+ *,
1915
+ upload_to: Optional[str] = None,
1916
+ ) -> None:
1917
+ from olmo_core.distributed.checkpoint import ( # type: ignore
1918
+ save_model_and_optim_state,
1919
+ )
1920
+
1921
+ with self._temporary_wd(dir) as checkpoint_dir:
1922
+ log.info("Saving model and optim state...")
1923
+ if get_fs_local_rank() == 0:
1924
+ (checkpoint_dir / "model").mkdir(exist_ok=True, parents=True)
1925
+ (checkpoint_dir / "optim").mkdir(exist_ok=True, parents=True)
1926
+ (checkpoint_dir / "train").mkdir(exist_ok=True, parents=True)
1927
+
1928
+ wait_for(
1929
+ lambda: (checkpoint_dir / "model").exists(), "Waiting for checkpoint model directory", timeout=10.0
1930
+ )
1931
+ wait_for(
1932
+ lambda: (checkpoint_dir / "optim").exists(), "Waiting for checkpoint optim directory", timeout=10.0
1933
+ )
1934
+ wait_for(
1935
+ lambda: (checkpoint_dir / "train").exists(), "Waiting for checkpoint train directory", timeout=10.0
1936
+ )
1937
+
1938
+ local_files_created = save_model_and_optim_state(checkpoint_dir, dist_model, optim)
1939
+ if upload_to is not None:
1940
+ for path in local_files_created:
1941
+ path = Path(path)
1942
+ upload_target = f"{upload_to.rstrip('/')}/{path.relative_to(checkpoint_dir)}"
1943
+ log.info(f"Uploading {path} to {upload_target}...")
1944
+ upload(path, upload_target, save_overwrite=self.cfg.save_overwrite)
1945
+
1946
+ log.info("Saving trainer state...")
1947
+ save_state_dict(
1948
+ checkpoint_dir,
1949
+ f"train/rank{get_global_rank()}.pt",
1950
+ trainer_state,
1951
+ upload_to=upload_to,
1952
+ )
1953
+
1954
+ self._save_config(checkpoint_dir, upload_to=upload_to)
1955
+
1956
+ def restore_checkpoint(
1957
+ self,
1958
+ load_path: PathOrStr,
1959
+ dist_model: nn.Module,
1960
+ optim: Optimizer,
1961
+ *,
1962
+ local_cache: Optional[PathOrStr] = None,
1963
+ load_optimizer_state: bool = True,
1964
+ ) -> Dict[str, Any]:
1965
+ from olmo_core.distributed.checkpoint import ( # type: ignore
1966
+ load_model_and_optim_state,
1967
+ )
1968
+
1969
+ log.info("Loading model and optim state...")
1970
+ load_model_and_optim_state(load_path, dist_model, optim if load_optimizer_state else None)
1971
+
1972
+ log.info("Loading trainer state...")
1973
+ try:
1974
+ trainer_state = load_state_dict(
1975
+ load_path, f"train/rank{get_global_rank()}.pt", local_cache=local_cache
1976
+ )
1977
+ except FileNotFoundError:
1978
+ # Fall back to rank 0 train state.
1979
+ # This can happen when we're restoring a checkpoint with a different world size.
1980
+ trainer_state = load_state_dict(load_path, "train/rank0.pt", local_cache=local_cache)
1981
+
1982
+ barrier()
1983
+ return trainer_state
1984
+
1985
+ def unshard_checkpoint(
1986
+ self,
1987
+ load_path: PathOrStr,
1988
+ *,
1989
+ local_cache: Optional[PathOrStr] = None,
1990
+ load_optimizer_state: bool = True,
1991
+ load_trainer_state: bool = True,
1992
+ device: Optional[torch.device] = None,
1993
+ ) -> Tuple[Dict[str, torch.Tensor], Optional[Dict[str, Any]], Optional[Dict[str, Any]]]:
1994
+ from olmo_core.distributed.checkpoint import ( # type: ignore
1995
+ unshard_model_state,
1996
+ unshard_optim_state,
1997
+ )
1998
+
1999
+ model_state = unshard_model_state(load_path, device=device)
2000
+ optim_state: Optional[Dict[str, Any]] = None
2001
+ train_state: Optional[Dict[str, Any]] = None
2002
+ if load_optimizer_state:
2003
+ optim_state = cast(Dict[str, Any], unshard_optim_state(load_path, device=device))
2004
+ if load_trainer_state:
2005
+ train_state = load_state_dict(load_path, "train/rank0.pt", local_cache=local_cache)
2006
+ return model_state, optim_state, train_state
2007
+
2008
+
2009
+ def build_sharded_checkpointer(
2010
+ cfg: TrainConfig, *, name: Optional[ShardedCheckpointerType] = None, use_shared_mem_impl: bool = False
2011
+ ) -> Checkpointer:
2012
+ name = name or cfg.sharded_checkpointer
2013
+ if name == ShardedCheckpointerType.torch_new:
2014
+ return TorchNewStyleShardedCheckpointer(cfg)
2015
+ elif name == ShardedCheckpointerType.torch_legacy:
2016
+ return TorchLegacyShardedCheckpointer(cfg, use_shared_mem_impl=use_shared_mem_impl)
2017
+ elif name == ShardedCheckpointerType.local:
2018
+ return LocalShardedCheckpointer(cfg)
2019
+ elif name == ShardedCheckpointerType.olmo_core:
2020
+ return OlmoCoreCheckpointer(cfg)
2021
+ else:
2022
+ raise NotImplementedError(name)
config.json CHANGED
@@ -1,29 +1,143 @@
1
  {
2
- "architectures": [
3
- "MOLMoEForCausalLM"
4
- ],
5
  "auto_map": {
6
- "AutoConfig": "config_molmoe.MolmoeConfig",
7
- "AutoModelForCausalLM": "modeling_molmoe.MOLMoEForCausalLM"
8
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  "clip_qkv": null,
 
 
 
 
 
10
  "embedding_size": 50304,
11
- "hidden_size": 2048,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  "initializer_range": 0.02,
13
- "intermediate_size": 1024,
14
  "layer_norm_eps": 1e-05,
15
- "max_position_embeddings": 4096,
16
- "model_type": "molmoe",
17
- "num_attention_heads": 16,
18
- "num_hidden_layers": 16,
19
- "num_key_value_heads": 16,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  "qkv_bias": false,
 
 
 
 
 
 
 
21
  "rope_theta": 10000.0,
22
- "tie_word_embeddings": false,
23
- "torch_dtype": "float32",
24
- "transformers_version": "4.43.3",
 
 
 
 
 
 
 
 
 
25
  "use_cache": true,
 
 
26
  "use_position_ids": true,
27
- "vocab_size": 50304,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  "weight_tying": false
29
  }
 
1
  {
 
 
 
2
  "auto_map": {
3
+ "AutoConfig": "config_molmoe.MolmoConfig",
4
+ "AutoModelForCausalLM": "modeling_molmoe.MolmoForCausalLM"
5
  },
6
+ "activation_type": "swiglu",
7
+ "additional_vocab_size": 128,
8
+ "alibi": false,
9
+ "alibi_bias_max": 8.0,
10
+ "always_start_with_space": true,
11
+ "architectures": [
12
+ "OLMoForCausalLM"
13
+ ],
14
+ "attention_dropout": 0.0,
15
+ "attention_layer_norm": true,
16
+ "attention_layer_norm_with_affine": true,
17
+ "attention_type": "sdpa",
18
+ "attn_logit_softcapping": null,
19
+ "bias_for_layer_norm": false,
20
+ "block_group_size": 1,
21
+ "block_type": "moe",
22
  "clip_qkv": null,
23
+ "crop_mode": "overlap-and-resize-c2",
24
+ "d_model": 2048,
25
+ "default_inference_len": 65,
26
+ "do_random_scale": false,
27
+ "embedding_dropout": 0.0,
28
  "embedding_size": 50304,
29
+ "final_logit_softcapping": null,
30
+ "fix_image_input_idx": 2,
31
+ "float32_attention": true,
32
+ "gin_bindings": null,
33
+ "head_dim": null,
34
+ "image_feature_dropout": 0.0,
35
+ "image_padding_embed": "pad_and_partial_pad",
36
+ "image_pooling_2d": "attention-meanq",
37
+ "image_pooling_h": 2,
38
+ "image_pooling_w": 2,
39
+ "image_projector": "mlp",
40
+ "include_bias": false,
41
+ "init_cutoff_factor": 3.0,
42
+ "init_device": "meta",
43
+ "init_fn": "normal",
44
+ "init_std": 0.02,
45
  "initializer_range": 0.02,
 
46
  "layer_norm_eps": 1e-05,
47
+ "layer_norm_type": "rms",
48
+ "layer_norm_with_affine": true,
49
+ "llm_load_path": null,
50
+ "loss_token_weighting": "root_subsegments",
51
+ "low_cpu_fsdp": true,
52
+ "max_crops": 12,
53
+ "max_position_embeddings": 32768,
54
+ "max_sequence_length": 4096,
55
+ "message_formatting": "role",
56
+ "mlp_hidden_size": null,
57
+ "mlp_ratio": 1,
58
+ "model_type": "molmo",
59
+ "moe_capacity_factor": 1.25,
60
+ "moe_dropless": true,
61
+ "moe_interleave": false,
62
+ "moe_lbl_in_fp32": false,
63
+ "moe_log_expert_assignment": false,
64
+ "moe_loss_weight": 0.0,
65
+ "moe_mlp_impl": "sparse",
66
+ "moe_num_experts": 64,
67
+ "moe_shared_expert": false,
68
+ "moe_top_k": 8,
69
+ "moe_zloss_weight": 0.0,
70
+ "multi_query_attention": null,
71
+ "n_heads": 16,
72
+ "n_kv_heads": null,
73
+ "n_layers": 16,
74
+ "new_embedding_init_range": 0.02,
75
+ "norm_after": false,
76
+ "normalize_input_embeds": false,
77
+ "overlap_margins": [
78
+ 4,
79
+ 4
80
+ ],
81
+ "pad_to": null,
82
+ "pad_token_id": 1,
83
+ "pad_tokenizer": false,
84
+ "precision": "amp_bf16",
85
+ "prompt_override": null,
86
+ "prompt_type": "uber_model",
87
  "qkv_bias": false,
88
+ "query_pre_attn_scalar": 224,
89
+ "residual_dropout": 0.1,
90
+ "response_attention_dropout": 0.0,
91
+ "response_residual_dropout": 0.0,
92
+ "rope": true,
93
+ "rope_full_precision": true,
94
+ "rope_impl": "llama",
95
  "rope_theta": 10000.0,
96
+ "scale_logits": false,
97
+ "system_prompt_kind": "demo_or_style",
98
+ "tokenizer": {
99
+ "identifier": "allenai/gpt-neox-olmo-dolma-v1_5",
100
+ "olmo_bos_token_id": null,
101
+ "olmo_eos_token_id": null,
102
+ "tokenizer_adds_space": false,
103
+ "tokenizer_dir": null,
104
+ "truncate_direction": "right"
105
+ },
106
+ "transformers_version": "4.45.0.dev0",
107
+ "unconditioned": false,
108
  "use_cache": true,
109
+ "use_cls_feature": false,
110
+ "use_col_tokens": true,
111
  "use_position_ids": true,
112
+ "vision_backbone": {
113
+ "attention_dropout": 0.0,
114
+ "fsdp_wrap": false,
115
+ "image_default_input_size": [
116
+ 336,
117
+ 336
118
+ ],
119
+ "image_dropout_rate": 0.0,
120
+ "image_emb_dim": 1024,
121
+ "image_head_dim": 64,
122
+ "image_mlp_activations": "quick_gelu",
123
+ "image_mlp_dim": 4096,
124
+ "image_model_type": "openai",
125
+ "image_norm_eps": 1e-05,
126
+ "image_num_heads": 16,
127
+ "image_num_key_value_heads": 16,
128
+ "image_num_layers": 23,
129
+ "image_num_pos": 577,
130
+ "image_patch_size": 14,
131
+ "image_pos_patch_size": 14,
132
+ "initializer_range": 0.02,
133
+ "residual_dropout": 0.0,
134
+ "resize_mode": "default"
135
+ },
136
+ "vit_layers": [
137
+ -2,
138
+ -9
139
+ ],
140
+ "vit_load_path": null,
141
+ "vocab_size": 50280,
142
  "weight_tying": false
143
  }
config_molmoe.py CHANGED
@@ -1,90 +1,909 @@
1
- from typing import List
2
-
3
- from transformers import PretrainedConfig, AutoTokenizer
4
-
5
-
6
- def config_to_moe_args(config):
7
- from megablocks.layers.arguments import Arguments as MoEArgs
8
- import torch.nn.functional as F
9
-
10
- # import pdb; pdb.set_trace()
11
-
12
- kwargs = {
13
- "activation_fn": F.silu,
14
- "mlp_type": "glu" if "glu" in config.activation_type.lower() else "mlp",
15
- "mlp_impl": "sparse",
16
- "hidden_size": config.d_model,
17
- "ffn_hidden_size": config.mlp_hidden_size,
18
- "moe_num_experts": 64,
19
- "num_layers": config.n_layers,
20
- # Handled by FSDP (https://github.com/databricks/megablocks/issues/57#issuecomment-1854594483)
21
- "moe_weight_parallelism": False,
22
- "moe_expert_model_parallelism": False,
23
- "moe_top_k": 8,
24
- # "moe_loss_weight": config.moe_loss_weight,
25
- # "device": config.init_device,
26
- # Handled by FSDP
27
- "bf16": False,
28
- "fp16": False,
29
- "bias": False,
30
- "return_bias": False,
31
- }
32
-
33
- return MoEArgs(**kwargs)
34
-
35
- class MolmoeConfig(PretrainedConfig):
36
- model_type = "molmoe"
37
- keys_to_ignore_at_inference = ["past_key_values"]
38
-
39
- def __init__(
40
- self,
41
- vocab_size=50304,
42
- embedding_size=50304,
43
- hidden_size=4096,
44
- intermediate_size=11008,
45
- num_hidden_layers=32,
46
- num_attention_heads=32,
47
- num_key_value_heads=None,
48
- max_position_embeddings=2048,
49
- initializer_range=0.02,
50
- use_cache=True,
51
- layer_norm_eps: float = 1e-5,
52
- rope_theta=10000.0,
53
- clip_qkv=None,
54
- qkv_bias: bool = False,
55
- weight_tying: bool = False,
56
- use_position_ids: bool=True,
57
- tie_word_embeddings: bool=True,
58
- moe_num_experts: int = 64,
59
- moe_top_k: int = 8,
60
- **kwargs,
61
- ):
62
- self.vocab_size = vocab_size
63
- self.embedding_size = embedding_size
64
- self.max_position_embeddings = max_position_embeddings
65
- self.hidden_size = hidden_size
66
- self.intermediate_size = intermediate_size
67
- self.num_hidden_layers = num_hidden_layers
68
- self.num_attention_heads = num_attention_heads
69
- self.layer_norm_eps = layer_norm_eps
70
- self.weight_tying = weight_tying
71
- self.use_position_ids = use_position_ids
72
-
73
- # for backward compatibility
74
- if num_key_value_heads is None:
75
- num_key_value_heads = num_attention_heads
76
-
77
- self.num_key_value_heads = num_key_value_heads
78
- self.initializer_range = initializer_range
79
- self.use_cache = use_cache
80
- self.rope_theta = rope_theta
81
- self.clip_qkv = clip_qkv
82
- self.qkv_bias = qkv_bias
83
- self.tie_word_embeddings = tie_word_embeddings
84
-
85
- super().__init__(
86
- tie_word_embeddings=tie_word_embeddings,
87
- **kwargs,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88
  )
89
 
90
- MolmoeConfig.register_for_auto_class()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import logging
4
+ from dataclasses import asdict, dataclass, field
5
+ from glob import glob
6
+ from pathlib import Path
7
+ from typing import (
8
+ Any,
9
+ Dict,
10
+ Iterable,
11
+ List,
12
+ Optional,
13
+ Tuple,
14
+ Type,
15
+ TypeVar,
16
+ Union,
17
+ cast,
18
+ )
19
+
20
+ import torch
21
+ from transformers import PretrainedConfig
22
+ from omegaconf import DictConfig, ListConfig, OmegaConf
23
+ from omegaconf import OmegaConf as om
24
+ from omegaconf.errors import OmegaConfBaseException
25
+ from torch.distributed.fsdp import MixedPrecision, ShardingStrategy
26
+ import gin
27
+
28
+ #from olmo.aliases import PathOrStr
29
+ from .aliases import PathOrStr
30
+ from olmo.exceptions import OLMoConfigurationError
31
+ from olmo.util import StrEnum, resource_path
32
+
33
+ from olmo.mm_data.data_utils import build_tokenizer
34
+ from olmo.multimodal_preprocessor import MultiModalPreprocessor
35
+
36
+ __all__ = [
37
+ "ActivationType",
38
+ "ActivationCheckpointingStrategy",
39
+ "BlockType",
40
+ "LayerNormType",
41
+ "VisionBackboneType",
42
+ "VisionBackboneConfig",
43
+ "InitFnType",
44
+ "ModelConfig",
45
+ "OptimizerType",
46
+ "OptimizerConfig",
47
+ "SchedulerType",
48
+ "SchedulerConfig",
49
+ "DataConfig",
50
+ "InstanceFilterConfig",
51
+ "EvaluatorConfig",
52
+ "TokenizerConfig",
53
+ "TrainConfig",
54
+ "PaddingDirection",
55
+ "TruncationDirection",
56
+ "SpeedMonitorConfig",
57
+ "WandbConfig",
58
+ "CompilerConfig",
59
+ "WandbConfig",
60
+ "FSDPPrecision",
61
+ "FSDPWrapStrategy",
62
+ "FSDPConfig",
63
+ "CheckpointType",
64
+ ]
65
+
66
+ C = TypeVar("C", bound="BaseConfig")
67
+ D = TypeVar("D", bound="DictConfig|ListConfig")
68
+
69
+
70
+ class AttentionType(StrEnum):
71
+ sdpa = "sdpa"
72
+ direct = "direct"
73
+ flash = "flash"
74
+
75
+
76
+ class BaseConfig:
77
+ @classmethod
78
+ def _register_resolvers(cls, validate_paths: bool = True):
79
+ # Expands path globs into a list.
80
+ def path_glob(*paths) -> List[str]:
81
+ out = []
82
+ for path in paths:
83
+ matches = sorted(glob(path))
84
+ if not matches and validate_paths:
85
+ raise FileNotFoundError(f"{path} does not match any files or dirs")
86
+ out.extend(matches)
87
+ return out
88
+
89
+ # Chooses the first path in the arguments that exists.
90
+ def path_choose(*paths) -> str:
91
+ from .util import is_url
92
+
93
+ for path in paths:
94
+ if is_url(path) or Path(path).exists():
95
+ return path
96
+ if validate_paths:
97
+ raise FileNotFoundError(", ".join(paths))
98
+ else:
99
+ return ""
100
+
101
+ # Finds the latest checkpoint in a folder.
102
+ def path_last_checkpoint(path) -> str:
103
+ from .util import find_latest_checkpoint
104
+
105
+ latest_checkpoint = find_latest_checkpoint(path)
106
+ if latest_checkpoint is None:
107
+ if validate_paths:
108
+ raise FileNotFoundError(f"Could not find a latest checkpoint at {path}")
109
+ else:
110
+ return ""
111
+ else:
112
+ return str(latest_checkpoint)
113
+
114
+ om.register_new_resolver("path.glob", path_glob, replace=True)
115
+ om.register_new_resolver("path.choose", path_choose, replace=True)
116
+ om.register_new_resolver("path.last_checkpoint", path_last_checkpoint, replace=True)
117
+
118
+ @classmethod
119
+ def update_legacy_settings(cls, config: D) -> D:
120
+ """
121
+ Update the legacy config settings whose schemas have undergone backwards-incompatible changes.
122
+ """
123
+ return config
124
+
125
+ @classmethod
126
+ def new(cls: Type[C], **kwargs) -> C:
127
+ cls._register_resolvers()
128
+ conf = om.structured(cls)
129
+ try:
130
+ if kwargs:
131
+ conf = om.merge(conf, kwargs)
132
+ return cast(C, om.to_object(conf))
133
+ except OmegaConfBaseException as e:
134
+ raise OLMoConfigurationError(str(e))
135
+
136
+ @classmethod
137
+ def load(
138
+ cls: Type[C],
139
+ path: PathOrStr,
140
+ overrides: Optional[List[str]] = None,
141
+ key: Optional[str] = None,
142
+ validate_paths: bool = True,
143
+ ) -> C:
144
+ """Load from a YAML file."""
145
+ cls._register_resolvers(validate_paths=validate_paths)
146
+ schema = om.structured(cls)
147
+ try:
148
+ raw = om.load(str(path))
149
+
150
+ # Backwards compatibility hack, we need this here not in `update_legacy_settings`
151
+ # since it has to be applied before selecting with `key`
152
+ if "tokenizer" in raw and "model" in raw:
153
+ raw["model"]["tokenizer"] = raw.pop("tokenizer")
154
+
155
+ if key is not None:
156
+ raw = raw[key] # type: ignore
157
+ raw = cls.update_legacy_settings(raw)
158
+ conf = om.merge(schema, raw)
159
+ if overrides:
160
+ conf = om.merge(conf, om.from_dotlist(overrides))
161
+ return cast(C, om.to_object(conf))
162
+ except OmegaConfBaseException as e:
163
+ raise OLMoConfigurationError(str(e))
164
+
165
+ def save(self, path: PathOrStr) -> None:
166
+ """Save to a YAML file."""
167
+ om.save(config=self, f=str(path))
168
+
169
+ def asdict(self, exclude: Optional[Iterable[str]] = None) -> Dict[str, Any]:
170
+ out = asdict(self) # type: ignore
171
+ if exclude is not None:
172
+ for name in exclude:
173
+ if name in out:
174
+ del out[name]
175
+ return out
176
+
177
+
178
+ class LayerNormType(StrEnum):
179
+ default = "default"
180
+ """
181
+ The default LayerNorm implementation, equivalent to PyTorch's built-in version.
182
+ """
183
+
184
+ low_precision = "low_precision"
185
+ """
186
+ A low-precision version of the default LayerNorm.
187
+ """
188
+
189
+ rms = "rms"
190
+ """
191
+ An RMSNorm implementation. When using ``torch.compile`` this is
192
+ probably the fastest implementation.
193
+ """
194
+
195
+ gemma_rms = "gemma_rms"
196
+ """
197
+ A GemmaRMSNorm implementation. When using ``torch.compile`` this is
198
+ probably the fastest implementation.
199
+ """
200
+
201
+
202
+ class ActivationType(StrEnum):
203
+ quick_gelu = "quick_gelu"
204
+ gelu = "gelu"
205
+ gelu_tanh = "gelu_tanh"
206
+ relu = "relu"
207
+ silu = "silu"
208
+ llama_geglu = "llama_geglu"
209
+ llama_geglu_tanh = "llama_geglu_tanh"
210
+ llama_swiglu = "llama_swiglu"
211
+ swiglu = "swiglu"
212
+
213
+
214
+ class BlockType(StrEnum):
215
+ sequential = "sequential"
216
+
217
+ llama = "llama"
218
+ """
219
+ A block similar to the sequential block with slightly different
220
+ implementations of operations like attention to imitate the behavior of Llama.
221
+ """
222
+
223
+ gemma = "gemma"
224
+ """
225
+ A block similar to the sequential block with slightly different
226
+ implementations of operations like attention to imitate the behavior of Gemma.
227
+ """
228
+
229
+ moe = "moe"
230
+
231
+
232
+ class InitFnType(StrEnum):
233
+ mitchell = "mitchell"
234
+ """
235
+ The strategy suggested to us by Mitchell Wortsman from UW.
236
+ This uses a truncated normal distribution with an adaptive standard deviation that depends
237
+ on the size of the weights as well as the depth of the layer.
238
+ """
239
+
240
+ normal = "normal"
241
+ """
242
+ All weights are initialized from the same normal distribution.
243
+ """
244
+
245
+ kaiming_normal = "kaiming_normal"
246
+ """
247
+ All weights are initialized with the Kaiming method from a normal distribution.
248
+ Note this currently won't work with FSDP.
249
+ """
250
+
251
+ fan_in = "fan_in"
252
+ """
253
+ "Fan-in variance scaling", i.e. normal with a standard deviation of ``1/sqrt(d_in)`` where ``d_in``
254
+ is the input dimensionality of the kernel.
255
+ """
256
+
257
+ full_megatron = "full_megatron"
258
+ """
259
+ This is what metaseq calls "full megatron init". It is the init used for Llama 2.
260
+ """
261
+
262
+
263
+ class VisionBackboneType(StrEnum):
264
+ openai = "openai"
265
+
266
+
267
+ class ImagePaddingEmbed(StrEnum):
268
+ pad_and_partial_pad = "pad_and_partial_pad"
269
+ pad_embed = "pad_embed"
270
+ regress = "regress"
271
+
272
+
273
+ class ImagePooling2DType(StrEnum):
274
+ attention = "attention"
275
+ attention_meanq = "attention-meanq"
276
+ attention_2wide = "attention_2wide"
277
+ attention_v2 = "attention-v2"
278
+ none = "none"
279
+ stack = "stack"
280
+
281
+
282
+ class ImageProjectType(StrEnum):
283
+ mlp = "mlp"
284
+ mlpx2 = "2mlp"
285
+ linear = "linear"
286
+
287
+
288
+ @dataclass
289
+ class VisionBackboneConfig(BaseConfig):
290
+ image_model_type: VisionBackboneType = VisionBackboneType.openai
291
+ image_default_input_size: Tuple[int, int] = (336, 336)
292
+ image_patch_size: int = 14
293
+ image_pos_patch_size: int = 14
294
+ image_emb_dim: int = 1024
295
+ image_num_heads: int = 16
296
+ image_num_key_value_heads: int = 16
297
+ image_num_layers: int = 24
298
+ image_head_dim: int = 64
299
+ image_mlp_dim: int = 4096
300
+ image_mlp_activations: ActivationType = ActivationType.gelu
301
+ image_dropout_rate: float = 0.0
302
+ image_num_pos: int = 577
303
+ image_norm_eps: float = 1e-5
304
+ attention_dropout: float = 0.0
305
+ residual_dropout: float = 0.0
306
+ initializer_range: float = 0.02
307
+ fsdp_wrap: bool = False
308
+
309
+ # how to preprocess imagse for this ViT
310
+ resize_mode: str = "default"
311
+
312
+ def __post_init__(self):
313
+ self.image_default_input_size = tuple(self.image_default_input_size) # type: ignore[assignment]
314
+
315
+ @property
316
+ def image_num_patch(self):
317
+ h, w = self.image_default_input_size
318
+ return h // self.image_patch_size, w // self.image_patch_size
319
+
320
+
321
+ class TruncationDirection(StrEnum):
322
+ right = "right"
323
+ left = "left"
324
+
325
+
326
+ @dataclass
327
+ class TokenizerConfig(BaseConfig):
328
+ identifier: str = "gpt2"
329
+ truncate_direction: TruncationDirection = TruncationDirection.right
330
+ # Does the tokenizer automatically start input text with a space
331
+ tokenizer_adds_space: Optional[bool] = False
332
+ tokenizer_dir: Optional[str] = None # tokenizer directory if using a seqio tokenizer
333
+ olmo_bos_token_id: Optional[int] = None
334
+ olmo_eos_token_id: Optional[int] = None
335
+
336
+
337
+ @dataclass
338
+ class ModelConfig(BaseConfig):
339
+ """
340
+ OLMo (model) configuration.
341
+ """
342
+
343
+ # Note that the defaults for these attributes are equivalent to the base GPT2 model.
344
+
345
+ d_model: int = 768
346
+ """
347
+ The hidden size of the model.
348
+ """
349
+
350
+ n_heads: int = 12
351
+ """
352
+ The number of self-attention heads.
353
+ """
354
+
355
+ n_kv_heads: Optional[int] = None
356
+ """
357
+ The number of heads to use for keys and values. Defaults to `n_heads`.
358
+ Set this to ``None`` or ``n_heads`` for normal multi-head attention.
359
+ Set this to 1 for multi-query attention.
360
+ Set it to some in-between value for Llama2-style grouped query attention.
361
+ """
362
+
363
+ qkv_bias: bool = False # qwen models use bias in kvq layers
364
+
365
+ clip_qkv: Optional[float] = None
366
+ """
367
+ Clip QKV to this value when set.
368
+ """
369
+
370
+ n_layers: int = 12
371
+ """
372
+ The number of layers/blocks.
373
+ """
374
+
375
+ mlp_ratio: int = 4
376
+ """
377
+ The ratio of the inner MLP dimensionality to ``d_model``.
378
+ This is only used when ``mlp_hidden_size`` is not set.
379
+ """
380
+
381
+ mlp_hidden_size: Optional[int] = None
382
+ """
383
+ Set the exact hidden size for the MLP. Otherwise the inner MLP hidden size will be set to `mlp_ratio * d_model`.
384
+ """
385
+
386
+ activation_type: ActivationType = ActivationType.swiglu
387
+ """
388
+ The activation function to use within the MLP layers.
389
+ """
390
+
391
+ block_type: BlockType = BlockType.sequential
392
+ """
393
+ The transformer block implementation.
394
+ """
395
+
396
+ block_group_size: int = 1
397
+ """
398
+ The number of blocks to group together into a single parent block.
399
+ This has no affect on the number of parameters in the model and is only used to wrap groups
400
+ of blocks together with a single FSDP wrapper during training.
401
+ """
402
+
403
+ alibi: bool = False
404
+ """
405
+ If ``True``, use ALiBi embeddings. Mutually exclusive with ``rope``.
406
+ """
407
+
408
+ alibi_bias_max: float = 8.0
409
+ """
410
+ Maximum absolute value of ALiBi bias.
411
+ """
412
+
413
+ rope: bool = False
414
+ """
415
+ Use rotary positional embeddings (RoPE). Mutually exclusive with ``alibi``.
416
+ """
417
+
418
+ rope_full_precision: bool = True
419
+ """
420
+ If ``True``, apply RoPE embeddings at full precision regardless of the input type. Otherwise,
421
+ apply RoPE at the precision of the input.
422
+ """
423
+
424
+ rope_theta: float = 10000.
425
+
426
+ rope_impl: str = "cockatoo"
427
+
428
+ vision_backbone: Optional[VisionBackboneConfig] = None
429
+ """
430
+ Vision backbone settings for multi-modal models.
431
+ """
432
+
433
+ vit_load_path: Optional[str] = None
434
+ """
435
+ Use this to load the vit model.
436
+ """
437
+
438
+ llm_load_path: Optional[str] = None
439
+ """
440
+ Use this to partially load the llm transformer.
441
+ """
442
+
443
+ low_cpu_fsdp: bool = True
444
+ """
445
+ If ``True``, we save cpu memory by loading the pretrained vision model on randk0 only
446
+ when init_device is `meta`.
447
+ If TrainConfig.load_path is set, this should be set to ``False`` (default: True)
448
+ """
449
+
450
+ attention_type: AttentionType = AttentionType.sdpa
451
+ """
452
+ Attention implementation to use.
453
+ """
454
+
455
+ float32_attention: bool = True
456
+ """
457
+ Compute attention in float32
458
+ """
459
+
460
+ attention_dropout: float = 0.1
461
+ """
462
+ The dropout probability within the attention modules.
463
+ """
464
+
465
+ # Only apply dropout to response tokens
466
+ response_attention_dropout: float = 0.0
467
+
468
+ multi_query_attention: Optional[bool] = None
469
+ """
470
+ Deprecated. Use n_kv_heads instead.
471
+ """
472
+
473
+ attention_layer_norm: bool = False
474
+ """
475
+ Apply layer norm to the keys and queries within the attention mechanism.
476
+ This can help stabilize training.
477
+ """
478
+
479
+ residual_dropout: float = 0.1
480
+ """
481
+ The dropout probability for the MLP and attention output within each block.
482
+ """
483
+
484
+ # Only apply dropout to response tokens
485
+ response_residual_dropout: float = 0.0
486
+
487
+ embedding_dropout: float = 0.1
488
+ """
489
+ The dropout probability for embeddings.
490
+ """
491
+
492
+ layer_norm_type: LayerNormType = LayerNormType.default
493
+ """
494
+ The layernorm implementation to use.
495
+ """
496
+
497
+ layer_norm_with_affine: bool = True
498
+ """
499
+ Whether to include bias and weight parameters for the layer norms.
500
+ This only affects layer norms that are immediately followed by a linear layer in the forward pass,
501
+ so everything except QK-norms. To turn off affines for QK norms as well, set :attr:`attention_layer_norm_with_affine`
502
+ to ``False``.
503
+ """
504
+
505
+ layer_norm_eps: Optional[float] = None
506
+
507
+ attention_layer_norm_with_affine: bool = True
508
+ """
509
+ Toggle affine transform for the QK norms.
510
+ """
511
+
512
+ max_sequence_length: int = 1024
513
+ """
514
+ The maximum input sequence length supported by the model.
515
+ """
516
+
517
+ max_position_embeddings: Optional[int] = None
518
+
519
+ include_bias: bool = True
520
+ """
521
+ Whether or not to include bias parameters in linear layers.
522
+ In PaLM, they got rid of all bias terms because they found that large
523
+ models tend to have near 0 bias terms anyway.
524
+ """
525
+
526
+ bias_for_layer_norm: Optional[bool] = None
527
+ """
528
+ Whether or not to include bias parameters in layer norm.
529
+ This is separate from the include_bias parameter, because of a ROCm crash when biases are disabled in
530
+ layer norm.
531
+ When this is None (the default), it inherits the setting from include_bias.
532
+ """
533
+
534
+ scale_logits: bool = False
535
+ """
536
+ If ``True``, scale the output logits by ``1 / sqrt(d_model)``.
537
+ """
538
+
539
+ vocab_size: int = 50257
540
+ """
541
+ Vocabulary size of the model.
542
+ """
543
+
544
+ embedding_size: Optional[int] = 50304
545
+ """
546
+ The number of embeddings, i.e. the number of tokens. If set to ``None`` it will default
547
+ to ``vocab_size``. If ``vocab_size`` is not a multiple of 128, setting this to the
548
+ next multiple of 128 that's greater than ``vocab_size`` can improve throughput
549
+ substantially.
550
+ """
551
+
552
+ # For new special tokens
553
+ additional_vocab_size: Optional[int] = None
554
+
555
+ new_embedding_init_range: float = 0.02
556
+ """
557
+ How to initialize embedding for new
558
+ """
559
+
560
+ weight_tying: bool = True
561
+ """
562
+ Whether to tie output linear weights to the input embedding.
563
+ """
564
+
565
+ pad_token_id: int = -1
566
+ """
567
+ The ID of the token to use for padding. Defaults to the ID of the EOS token.
568
+ """
569
+
570
+ init_device: Optional[str] = None
571
+ """
572
+ The torch device to use when initializing the model parameters, e.g. "cpu", "cuda:0", "meta".
573
+ """
574
+
575
+ init_fn: InitFnType = InitFnType.normal
576
+ """
577
+ The weight initialization strategy.
578
+ """
579
+
580
+ init_std: float = 0.02
581
+ """
582
+ The standard deviation to use when initializing weights with a "fixed distribution" ``init_fn``, such
583
+ as "normal".
584
+ """
585
+
586
+ init_cutoff_factor: Optional[float] = None
587
+ """
588
+ A positive factor used to scale the cutoff values when initializing weights with a "fixed distribution" ``init_fn``, such
589
+ as "normal". Setting this to None means values are not cutoff.
590
+ """
591
+
592
+ norm_after: bool = False
593
+ """
594
+ Apply norm after the attention/feedforward layers rather than before, as introduced in the Swin transformer paper (Liu et al).
595
+ """
596
+
597
+ precision: Optional[str] = None
598
+ """
599
+ Precision used to train/evaluate with. You shouldn't set this directly.
600
+ See :data:`TrainConfig.precision` instead.
601
+ """
602
+
603
+ moe_num_experts: Optional[int] = 8
604
+ """
605
+ The number of experts to use in the MoE block.
606
+ """
607
+
608
+ moe_top_k: Optional[int] = 2
609
+ """
610
+ The number of experts to select for each token.
611
+ """
612
+
613
+ moe_mlp_impl: Optional[str] = "sparse"
614
+ """
615
+ Choose "grouped" for grouped GEMM installable via `pip install git+https://[email protected]/tgale96/grouped_gemm.git@66c7195e35e8c4f22fa6a014037ef511bfa397cb`.
616
+ """
617
+
618
+ moe_log_expert_assignment: Optional[bool] = False
619
+ """
620
+ Whether to log the expert assignment.
621
+ """
622
+
623
+ moe_shared_expert: Optional[bool] = False
624
+ """
625
+ Whether to have an always-used expert like in [DeepSeekMoE](https://arxiv.org/abs/2401.06066).
626
+ """
627
+
628
+ moe_lbl_in_fp32: Optional[bool] = False
629
+ """
630
+ Whether to perform load balancing in FP32.
631
+ """
632
+
633
+ moe_interleave: Optional[bool] = False
634
+ """
635
+ Interleave sequential with MoE blocks starting with sequential.
636
+ """
637
+
638
+ moe_loss_weight: Optional[float] = 0.1
639
+ """
640
+ The weight to use for the MoE load balancing loss.
641
+ """
642
+
643
+ moe_zloss_weight: Optional[float] = None
644
+ """
645
+ Weight for MoE router z-loss where None means no router z-loss. 0.001 is a common value.
646
+ """
647
+
648
+ moe_dropless: Optional[bool] = True
649
+ """
650
+ Whether to use [dMoE](https://arxiv.org/abs/2211.15841).
651
+ """
652
+
653
+ moe_capacity_factor: Optional[float] = 1.25
654
+ """
655
+ The capacity factor to use in the MoE block. Only applies if not using dMoE.
656
+ """
657
+
658
+ # Image pre-processing options.
659
+ max_crops: int = 12
660
+
661
+ crop_mode: str = "patchify-v2-and-resize-c2"
662
+
663
+ do_random_scale: bool = True
664
+
665
+ use_col_tokens: bool = True
666
+
667
+ # How to prompt the model
668
+ prompt_type: str = "none"
669
+
670
+ # System prompt to use
671
+ system_prompt_kind: str = "style"
672
+
673
+ # How to format messages
674
+ message_formatting: str = "none"
675
+
676
+ always_start_with_space: bool = True
677
+
678
+ prompt_override: Optional[str] = None
679
+
680
+ default_inference_len: Optional[int] = 65
681
+
682
+ overlap_margins: Tuple[int, int] = (4, 4)
683
+
684
+ image_padding_embed: Optional[ImagePaddingEmbed] = None
685
+
686
+ # What layers to get from the image encoder
687
+ vit_layers: Tuple = (-1,)
688
+
689
+ # Controls the image/language connector
690
+ image_pooling_h: int = 2
691
+
692
+ image_pooling_w: int = 2
693
+
694
+ image_pooling_2d: ImagePooling2DType = ImagePooling2DType.attention
695
+
696
+ image_projector: ImageProjectType = ImageProjectType.mlp
697
+
698
+ image_feature_dropout: float = 0.0
699
+
700
+ use_cls_feature: bool = False
701
+
702
+ fix_image_input_idx: int = 2
703
+
704
+ # Makes the model ignore the image
705
+ unconditioned: bool = False
706
+
707
+ # Use in combination with sub-sequence experts to make imags/text tokens always
708
+ # occupy particular sub-sequences of the input
709
+ pad_to: Optional[int] = None
710
+
711
+ # LLM Transformer settings
712
+ initializer_range: float = 0.02
713
+
714
+ pad_tokenizer: bool = False
715
+
716
+ normalize_input_embeds: bool = False
717
+
718
+ use_position_ids: bool = True
719
+ """
720
+ Whether to use position IDs in the model.
721
+ The model operation regarding positional embeddings changes depending on this variable.
722
+ """
723
+
724
+ query_pre_attn_scalar: int = 224
725
+ """
726
+ Scalar to apply to the queries before attention.
727
+ Used for Gemma-2.
728
+ """
729
+
730
+ attn_logit_softcapping: Optional[float] = None
731
+ """
732
+ Softcap the logits in the attention mechanism.
733
+ Used for Gemma-2.
734
+ """
735
+
736
+ final_logit_softcapping: Optional[float] = None
737
+ """
738
+ Softcap the final logits.
739
+ Used for Gemma-2.
740
+ """
741
+
742
+ head_dim: Optional[int] = None
743
+ """
744
+ The head dimensionality for the attention mechanism.
745
+ Used for Gemma-2.
746
+ """
747
+
748
+ tokenizer: TokenizerConfig = field(default_factory=TokenizerConfig)
749
+ """
750
+ Tokenizer configuration.
751
+ """
752
+
753
+ loss_token_weighting: Optional[str] = None
754
+
755
+ gin_bindings: Optional[str] = None
756
+
757
+ def get_tokenizer(self):
758
+ tokenizer_cfg = self.tokenizer
759
+ assert tokenizer_cfg.identifier.startswith("mm:")
760
+ kargs = {}
761
+ if tokenizer_cfg.identifier[3:].startswith("olmo-"):
762
+ kargs["olmo_bos_token_id"] = tokenizer_cfg.olmo_bos_token_id
763
+ kargs["olmo_eos_token_id"] = tokenizer_cfg.olmo_eos_token_id
764
+ return build_tokenizer(
765
+ tokenizer_cfg.identifier[3:],
766
+ adds_space=tokenizer_cfg.tokenizer_adds_space,
767
+ tokenizer_dir=tokenizer_cfg.tokenizer_dir,
768
+ pad_tokenizer_to=self.vocab_size if self.pad_tokenizer else None,
769
+ **kargs
770
+ )
771
+
772
+ def get_preprocessor(self):
773
+ vision_cfg = self.vision_backbone
774
+ h, w = self.llm_patches_per_crop()
775
+
776
+ return MultiModalPreprocessor(
777
+ loss_token_weighting=self.loss_token_weighting,
778
+ always_start_with_space=self.always_start_with_space,
779
+ tokenizer=self.get_tokenizer(),
780
+ prompt_override=self.prompt_override,
781
+ fix_image_input_idx=self.fix_image_input_idx,
782
+ prompt_templates=self.prompt_type,
783
+ system_prompt=self.system_prompt_kind,
784
+ default_inference_len=self.default_inference_len,
785
+ message_format=self.message_formatting,
786
+ unconditioned=self.unconditioned,
787
+ crop_mode=self.crop_mode,
788
+ max_crops=self.max_crops,
789
+ do_random_scale=self.do_random_scale,
790
+ base_image_input_size=vision_cfg.image_default_input_size,
791
+ image_patch_size=vision_cfg.image_patch_size,
792
+ image_token_length_h=h,
793
+ image_token_length_w=w,
794
+ use_col_tokens=self.use_col_tokens,
795
+ overlap_margins=self.overlap_margins,
796
+ image_padding_mask=self.image_padding_embed is not None
797
  )
798
 
799
+ def __post_init__(self):
800
+ self.vit_layers = tuple(self.vit_layers) # type: ignore[assignment]
801
+
802
+ @classmethod
803
+ def update_legacy_settings(cls, config: D) -> D:
804
+ """
805
+ Update the legacy config settings whose schemas have undergone backwards-incompatible changes.
806
+ """
807
+ if "flash_attention" in config:
808
+ is_flash = config.flash_attention
809
+ del config.flash_attention
810
+ config.attention_type = AttentionType.flash if is_flash else AttentionType.sdpa
811
+
812
+ if "bos_token_id" in config:
813
+ config.tokenizer.olmo_bos_token_id = config.pop("bos_token_id")
814
+ config.tokenizer.olmo_eos_token_id = config.pop("eos_token_id")
815
+
816
+ if "image_padding_mask" in config:
817
+ assert not config["image_padding_mask"]
818
+ del config["image_padding_mask"]
819
+ config["image_padding_embed"] = None
820
+ elif "image_padding_embed" not in config:
821
+ config["image_padding_embed"] = None
822
+ return config
823
+
824
+ @property
825
+ def effective_n_kv_heads(self) -> int:
826
+ if self.n_kv_heads is None:
827
+ if self.multi_query_attention is True:
828
+ return 1
829
+ else:
830
+ return self.n_heads
831
+ else:
832
+ if self.multi_query_attention is None:
833
+ return self.n_kv_heads
834
+ if self.multi_query_attention:
835
+ n_kv_heads_should_be = 1
836
+ else:
837
+ n_kv_heads_should_be = self.n_heads
838
+ if self.n_kv_heads == n_kv_heads_should_be:
839
+ return n_kv_heads_should_be
840
+ else:
841
+ raise OLMoConfigurationError(
842
+ "You can't set `multi_query_attention` and `n_kv_heads` at the same time."
843
+ )
844
+
845
+ @property
846
+ def image_num_patch(self):
847
+ assert self.vision_backbone is not None
848
+ return self.vision_backbone.image_num_patch
849
+
850
+ @property
851
+ def image_patch_size(self):
852
+ assert self.vision_backbone is not None
853
+ return self.visoin_backbone.image_patch_size
854
+
855
+ def llm_patches_per_crop(self):
856
+ h, w = self.image_num_patch
857
+ # Round up in case we need to pad the image features for pooling
858
+ h = (h + self.image_pooling_h - 1) // self.image_pooling_h
859
+ w = (w + self.image_pooling_w - 1) // self.image_pooling_w
860
+ return h, w
861
+
862
+ def get_max_crops(self) -> int:
863
+ """Max numbers of that can be built for one image"""
864
+ if self.crop_mode == "resize":
865
+ return 1
866
+ elif "resize" in self.crop_mode:
867
+ return 1 + self.max_crops
868
+ else:
869
+ return self.max_crops
870
+
871
+
872
+ class MolmoConfig(PretrainedConfig):
873
+ model_type = "molmo"
874
+ keys_to_ignore_at_inference = ["past_key_values"] # TODO: confirm
875
+
876
+ def __init__(self, use_cache: bool = False, **kwargs):
877
+ model_config = ModelConfig()
878
+ all_kwargs = model_config.asdict()
879
+ all_kwargs.update(kwargs)
880
+ all_kwargs.update({"use_cache": use_cache})
881
+ all_kwargs.update(
882
+ {"architectures": all_kwargs.get("architectures", ["OLMoForCausalLM"]) or ["OLMoForCausalLM"]}
883
+ )
884
+ super().__init__(**all_kwargs)
885
+
886
+ @property
887
+ def num_attention_heads(self):
888
+ return self.n_heads
889
+
890
+ @property
891
+ def num_hidden_layers(self):
892
+ return self.n_layers
893
+
894
+ @property
895
+ def hidden_size(self):
896
+ return self.d_model
897
+
898
+ @property
899
+ def image_num_patch(self):
900
+ assert self.vision_backbone is not None
901
+ return self.vision_backbone.image_num_patch
902
+
903
+ @property
904
+ def llm_patches_per_crop(self):
905
+ h, w = self.image_num_patch
906
+ # Round up in case we need to pad the image features for pooling
907
+ h = (h + self.image_pooling_h - 1) // self.image_pooling_h
908
+ w = (w + self.image_pooling_w - 1) // self.image_pooling_w
909
+ return h, w
modeling_molmoe.py CHANGED
The diff for this file is too large to render. See raw diff
 
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7396521f044a7f809d12dd12b4a391a7184268ae3b4e2445963ca42be7dd6211
3
- size 28887711982
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2030e3d4bff2052c9dbe44d592e2929d451bbbdf098524b65f71893a85c51df
3
+ size 28888362419
util.py ADDED
@@ -0,0 +1,785 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+ import logging
3
+ import os
4
+ import re
5
+ import socket
6
+ import sys
7
+ import time
8
+ import warnings
9
+ from datetime import datetime
10
+ from enum import Enum
11
+ from itertools import cycle, islice
12
+ from pathlib import Path
13
+ from queue import Queue
14
+ from threading import Thread
15
+ from typing import Any, Callable, Dict, Optional, Tuple, Union
16
+
17
+ import boto3
18
+ import botocore.exceptions as boto_exceptions
19
+ import rich
20
+ from botocore.config import Config
21
+ from cached_path.schemes import SchemeClient, add_scheme_client
22
+ from rich.console import Console, ConsoleRenderable
23
+ from rich.highlighter import NullHighlighter
24
+ from rich.progress import Progress
25
+ from rich.text import Text
26
+ from rich.traceback import Traceback
27
+
28
+ from .aliases import PathOrStr
29
+ from .exceptions import (
30
+ OLMoCliError,
31
+ OLMoEnvironmentError,
32
+ OLMoError,
33
+ OLMoNetworkError,
34
+ OLMoThreadError,
35
+ )
36
+ from .torch_util import get_global_rank, get_local_rank, get_node_rank, is_distributed
37
+
38
+ try:
39
+ from functools import cache
40
+ except ImportError:
41
+ from functools import lru_cache as cache
42
+
43
+
44
+ class StrEnum(str, Enum):
45
+ """
46
+ This is equivalent to Python's :class:`enum.StrEnum` since version 3.11.
47
+ We include this here for compatibility with older version of Python.
48
+ """
49
+
50
+ def __str__(self) -> str:
51
+ return self.value
52
+
53
+ def __repr__(self) -> str:
54
+ return f"'{str(self)}'"
55
+
56
+
57
+ _log_extra_fields: Dict[str, Any] = {}
58
+ log = logging.getLogger(__name__)
59
+
60
+
61
+ class LogFilterType(StrEnum):
62
+ rank0_only = "rank0_only"
63
+ local_rank0_only = "local_rank0_only"
64
+ all_ranks = "all_ranks"
65
+
66
+
67
+ def log_extra_field(field_name: str, field_value: Any) -> None:
68
+ global _log_extra_fields
69
+ if field_value is None:
70
+ if field_name in _log_extra_fields:
71
+ del _log_extra_fields[field_name]
72
+ else:
73
+ _log_extra_fields[field_name] = field_value
74
+
75
+
76
+ def setup_logging(log_filter_type: LogFilterType = LogFilterType.rank0_only) -> None:
77
+ """
78
+ :param rank0_only: INFO and below messages will only be emitted on the rank0 process.
79
+ """
80
+ log_extra_field("hostname", socket.gethostname())
81
+ if is_distributed():
82
+ log_extra_field("node_rank", get_node_rank())
83
+ log_extra_field("local_rank", get_local_rank())
84
+ log_extra_field("global_rank", get_global_rank())
85
+ else:
86
+ log_extra_field("node_rank", 0)
87
+ log_extra_field("local_rank", 0)
88
+ log_extra_field("global_rank", 0)
89
+
90
+ old_log_record_factory = logging.getLogRecordFactory()
91
+
92
+ def log_record_factory(*args, **kwargs) -> logging.LogRecord:
93
+ record = old_log_record_factory(*args, **kwargs)
94
+ for field_name, field_value in _log_extra_fields.items():
95
+ setattr(record, field_name, field_value)
96
+ return record
97
+
98
+ logging.setLogRecordFactory(log_record_factory)
99
+
100
+ handler: logging.Handler
101
+ if (
102
+ os.environ.get("OLMo_NONINTERACTIVE", False)
103
+ or os.environ.get("DEBIAN_FRONTEND", None) == "noninteractive"
104
+ or not sys.stdout.isatty()
105
+ ):
106
+ handler = logging.StreamHandler(sys.stdout)
107
+ formatter = logging.Formatter(
108
+ "%(asctime)s\t%(hostname)s:%(local_rank)s\t%(name)s:%(lineno)s\t%(levelname)s\t%(message)s"
109
+ )
110
+ formatter.default_time_format = "%Y-%m-%d %H:%M:%S"
111
+ formatter.default_msec_format = "%s.%03d"
112
+ handler.setFormatter(formatter)
113
+ else:
114
+ handler = RichHandler()
115
+
116
+ def rank0_filter(record: logging.LogRecord) -> int:
117
+ if record.levelno > logging.INFO:
118
+ return 1
119
+ if getattr(record, "global_rank", 0) == 0:
120
+ return 1
121
+ else:
122
+ return 0
123
+
124
+ def local_rank0_filter(record: logging.LogRecord) -> int:
125
+ if record.levelno > logging.INFO:
126
+ return 1
127
+ if getattr(record, "local_rank", 0) == 0:
128
+ return 1
129
+ else:
130
+ return 0
131
+
132
+ if log_filter_type == LogFilterType.rank0_only:
133
+ filter = rank0_filter
134
+ elif log_filter_type == LogFilterType.local_rank0_only:
135
+ filter = local_rank0_filter # type: ignore
136
+ elif log_filter_type == LogFilterType.all_ranks:
137
+ filter = None
138
+ else:
139
+ raise ValueError(log_filter_type)
140
+
141
+ if filter is not None:
142
+ handler.addFilter(filter) # type: ignore
143
+ logging.basicConfig(handlers=[handler], level=logging.INFO)
144
+
145
+ logging.captureWarnings(True)
146
+ logging.getLogger("urllib3").setLevel(logging.ERROR)
147
+
148
+
149
+ def excepthook(exctype, value, traceback):
150
+ """
151
+ Used to patch `sys.excepthook` in order to log exceptions.
152
+ """
153
+ if issubclass(exctype, KeyboardInterrupt):
154
+ sys.__excepthook__(exctype, value, traceback)
155
+ elif issubclass(exctype, OLMoCliError):
156
+ rich.get_console().print(f"[yellow]{value}[/]", highlight=False)
157
+ elif issubclass(exctype, OLMoError):
158
+ rich.get_console().print(Text(f"{exctype.__name__}:", style="red"), value, highlight=False)
159
+ else:
160
+ log.critical("Uncaught %s: %s", exctype.__name__, value, exc_info=(exctype, value, traceback))
161
+
162
+
163
+ def install_excepthook():
164
+ sys.excepthook = excepthook
165
+
166
+
167
+ def filter_warnings():
168
+ # Filter internal deprecation warnings from torch
169
+ warnings.filterwarnings(
170
+ action="ignore",
171
+ category=UserWarning,
172
+ message="torch.distributed.*_base is a private function and will be deprecated.*",
173
+ )
174
+ warnings.filterwarnings(
175
+ action="ignore",
176
+ category=UserWarning,
177
+ message="TypedStorage is deprecated.*",
178
+ )
179
+ warnings.filterwarnings(
180
+ action="ignore",
181
+ category=UserWarning,
182
+ message="Please use DTensor instead.*",
183
+ )
184
+ # Torchvision warnings. We don't actually use torchvision.
185
+ warnings.filterwarnings(
186
+ action="ignore",
187
+ message="failed to load.*",
188
+ module="torchvision.io.image",
189
+ )
190
+
191
+
192
+ def set_env_variables():
193
+ os.environ["TOKENIZERS_PARALLELISM"] = "false"
194
+
195
+
196
+ def prepare_cli_environment(log_filter_type: Optional[LogFilterType] = None):
197
+ if log_filter_type is None:
198
+ log_filter_type = LogFilterType(os.environ.get("LOG_FILTER_TYPE", "rank0_only"))
199
+ rich.reconfigure(width=max(rich.get_console().width, 180), soft_wrap=True)
200
+ setup_logging(log_filter_type=log_filter_type)
201
+ install_excepthook()
202
+ filter_warnings()
203
+ set_env_variables()
204
+
205
+
206
+ def clean_opt(arg: str) -> str:
207
+ if "=" not in arg:
208
+ arg = f"{arg}=True"
209
+ name, val = arg.split("=", 1)
210
+ name = name.strip("-").replace("-", "_")
211
+ return f"{name}={val}"
212
+
213
+
214
+ class RichHandler(logging.Handler):
215
+ """
216
+ A simplified version of rich.logging.RichHandler from
217
+ https://github.com/Textualize/rich/blob/master/rich/logging.py
218
+ """
219
+
220
+ def __init__(
221
+ self,
222
+ *,
223
+ level: Union[int, str] = logging.NOTSET,
224
+ console: Optional[Console] = None,
225
+ markup: bool = False,
226
+ ) -> None:
227
+ super().__init__(level=level)
228
+ self.console = console or rich.get_console()
229
+ self.highlighter = NullHighlighter()
230
+ self.markup = markup
231
+
232
+ def emit(self, record: logging.LogRecord) -> None:
233
+ try:
234
+ if hasattr(record.msg, "__rich__") or hasattr(record.msg, "__rich_console__"):
235
+ self.console.print(record.msg)
236
+ else:
237
+ msg: Any = record.msg
238
+ if isinstance(record.msg, str):
239
+ msg = self.render_message(record=record, message=record.getMessage())
240
+ renderables = [
241
+ self.get_time_text(record),
242
+ self.get_level_text(record),
243
+ self.get_location_text(record),
244
+ msg,
245
+ ]
246
+ if record.exc_info is not None:
247
+ tb = Traceback.from_exception(*record.exc_info) # type: ignore
248
+ renderables.append(tb)
249
+ self.console.print(*renderables)
250
+ except Exception:
251
+ self.handleError(record)
252
+
253
+ def render_message(self, *, record: logging.LogRecord, message: str) -> ConsoleRenderable:
254
+ use_markup = getattr(record, "markup", self.markup)
255
+ message_text = Text.from_markup(message) if use_markup else Text(message)
256
+
257
+ highlighter = getattr(record, "highlighter", self.highlighter)
258
+ if highlighter:
259
+ message_text = highlighter(message_text)
260
+
261
+ return message_text
262
+
263
+ def get_time_text(self, record: logging.LogRecord) -> Text:
264
+ log_time = datetime.fromtimestamp(record.created)
265
+ time_str = log_time.strftime("[%Y-%m-%d %X]")
266
+ return Text(time_str, style="log.time", end=" ")
267
+
268
+ def get_level_text(self, record: logging.LogRecord) -> Text:
269
+ level_name = record.levelname
270
+ level_text = Text.styled(level_name.ljust(8), f"logging.level.{level_name.lower()}")
271
+ level_text.style = "log.level"
272
+ level_text.end = " "
273
+ return level_text
274
+
275
+ def get_location_text(self, record: logging.LogRecord) -> Text:
276
+ name_and_line = f"{record.name}:{record.lineno}" if record.name != "root" else "root"
277
+ text = f"[{name_and_line}, rank={record.local_rank}]" # type: ignore
278
+ return Text(text, style="log.path")
279
+
280
+
281
+ def wait_for(condition: Callable[[], bool], description: str, timeout: float = 10.0):
282
+ """Wait for the condition function to return True."""
283
+ start_time = time.monotonic()
284
+ while not condition():
285
+ time.sleep(0.5)
286
+ if time.monotonic() - start_time > timeout:
287
+ raise TimeoutError(f"{description} timed out")
288
+
289
+
290
+ def is_url(path: PathOrStr) -> bool:
291
+ return re.match(r"[a-z0-9]+://.*", str(path)) is not None
292
+
293
+
294
+ def dir_is_empty(dir: PathOrStr) -> bool:
295
+ dir = Path(dir)
296
+ if not dir.is_dir():
297
+ return True
298
+ try:
299
+ next(dir.glob("*"))
300
+ return False
301
+ except StopIteration:
302
+ return True
303
+
304
+
305
+ def get_progress_bar() -> Progress:
306
+ from cached_path import get_download_progress
307
+
308
+ return get_download_progress()
309
+
310
+
311
+ def resource_path(
312
+ folder: PathOrStr, fname: str, local_cache: Optional[PathOrStr] = None, progress: Optional[Progress] = None
313
+ ) -> Path:
314
+ if local_cache is not None and (local_path := Path(local_cache) / fname).is_file():
315
+ log.info(f"Found local cache of {fname} at {local_path}")
316
+ return local_path
317
+ else:
318
+ from cached_path import cached_path
319
+
320
+ return cached_path(f"{str(folder).rstrip('/')}/{fname}", progress=progress)
321
+
322
+
323
+ def file_size(path: PathOrStr) -> int:
324
+ """
325
+ Get the size of a local or remote file in bytes.
326
+ """
327
+ if is_url(path):
328
+ from urllib.parse import urlparse
329
+
330
+ parsed = urlparse(str(path))
331
+ if parsed.scheme == "gs":
332
+ return _gcs_file_size(parsed.netloc, parsed.path.strip("/"))
333
+ elif parsed.scheme in ("s3", "r2", "weka"):
334
+ return _s3_file_size(parsed.scheme, parsed.netloc, parsed.path.strip("/"))
335
+ elif parsed.scheme in ("http", "https"):
336
+ return _http_file_size(parsed.scheme, parsed.netloc, parsed.path.strip("/"))
337
+ elif parsed.scheme == "file":
338
+ return file_size(str(path).replace("file://", "", 1))
339
+ else:
340
+ raise NotImplementedError(f"file size not implemented for '{parsed.scheme}' files")
341
+ else:
342
+ return os.stat(path).st_size
343
+
344
+
345
+ def upload(source: PathOrStr, target: str, save_overwrite: bool = False):
346
+ """Upload source file to a target location on GCS or S3."""
347
+ from urllib.parse import urlparse
348
+
349
+ source = Path(source)
350
+ assert source.is_file()
351
+ parsed = urlparse(target)
352
+ if parsed.scheme == "gs":
353
+ _gcs_upload(source, parsed.netloc, parsed.path.strip("/"), save_overwrite=save_overwrite)
354
+ elif parsed.scheme in ("s3", "r2", "weka"):
355
+ _s3_upload(source, parsed.scheme, parsed.netloc, parsed.path.strip("/"), save_overwrite=save_overwrite)
356
+ else:
357
+ raise NotImplementedError(f"Upload not implemented for '{parsed.scheme}' scheme")
358
+
359
+
360
+ def get_bytes_range(source: PathOrStr, bytes_start: int, num_bytes: int) -> bytes:
361
+ if is_url(source):
362
+ from urllib.parse import urlparse
363
+
364
+ parsed = urlparse(str(source))
365
+ if parsed.scheme == "gs":
366
+ return _gcs_get_bytes_range(parsed.netloc, parsed.path.strip("/"), bytes_start, num_bytes)
367
+ elif parsed.scheme in ("s3", "r2", "weka"):
368
+ return _s3_get_bytes_range(
369
+ parsed.scheme, parsed.netloc, parsed.path.strip("/"), bytes_start, num_bytes
370
+ )
371
+ elif parsed.scheme in ("http", "https"):
372
+ return _http_get_bytes_range(
373
+ parsed.scheme, parsed.netloc, parsed.path.strip("/"), bytes_start, num_bytes
374
+ )
375
+ elif parsed.scheme == "file":
376
+ return get_bytes_range(str(source).replace("file://", "", 1), bytes_start, num_bytes)
377
+ else:
378
+ raise NotImplementedError(f"get bytes range not implemented for '{parsed.scheme}' files")
379
+ else:
380
+ with open(source, "rb") as f:
381
+ f.seek(bytes_start)
382
+ return f.read(num_bytes)
383
+
384
+
385
+ def find_latest_checkpoint(dir: PathOrStr) -> Optional[PathOrStr]:
386
+ if is_url(dir):
387
+ from urllib.parse import urlparse
388
+
389
+ parsed = urlparse(str(dir))
390
+ if parsed.scheme == "gs":
391
+ raise NotImplementedError
392
+ elif parsed.scheme in ("s3", "r2", "weka"):
393
+ return _s3_find_latest_checkpoint(parsed.scheme, parsed.netloc, parsed.path.strip("/"))
394
+ elif parsed.scheme == "file":
395
+ return find_latest_checkpoint(str(dir).replace("file://", "", 1))
396
+ else:
397
+ raise NotImplementedError(f"find_latest_checkpoint not implemented for '{parsed.scheme}' files")
398
+ else:
399
+ latest_step = 0
400
+ latest_checkpoint: Optional[Path] = None
401
+ for path in Path(dir).glob("step*"):
402
+ if path.is_dir():
403
+ try:
404
+ step = int(path.name.replace("step", "").replace("-unsharded", ""))
405
+ except ValueError:
406
+ continue
407
+ # We prioritize sharded checkpoints over unsharded checkpoints.
408
+ if step > latest_step or (step == latest_step and not path.name.endswith("-unsharded")):
409
+ latest_step = step
410
+ latest_checkpoint = path
411
+ return latest_checkpoint
412
+
413
+
414
+ def _gcs_upload(source: Path, bucket_name: str, key: str, save_overwrite: bool = False):
415
+ from google.cloud import storage as gcs
416
+
417
+ storage_client = gcs.Client()
418
+ bucket = storage_client.bucket(bucket_name)
419
+ blob = bucket.blob(key)
420
+ if not save_overwrite and blob.exists():
421
+ raise FileExistsError(f"gs://{bucket_name}/{key} already exists. Use save_overwrite to overwrite it.")
422
+ blob.upload_from_filename(source)
423
+
424
+
425
+ def _gcs_file_size(bucket_name: str, key: str) -> int:
426
+ from google.api_core.exceptions import NotFound
427
+ from google.cloud import storage as gcs
428
+
429
+ storage_client = gcs.Client()
430
+ bucket = storage_client.bucket(bucket_name)
431
+ blob = bucket.blob(key)
432
+ try:
433
+ blob.reload()
434
+ except NotFound:
435
+ raise FileNotFoundError(f"gs://{bucket_name}/{key}")
436
+ assert blob.size is not None
437
+ return blob.size
438
+
439
+
440
+ def _gcs_get_bytes_range(bucket_name: str, key: str, bytes_start: int, num_bytes: int) -> bytes:
441
+ from google.api_core.exceptions import NotFound
442
+ from google.cloud import storage as gcs
443
+
444
+ storage_client = gcs.Client()
445
+ bucket = storage_client.bucket(bucket_name)
446
+ blob = bucket.blob(key)
447
+ try:
448
+ blob.reload()
449
+ except NotFound:
450
+ raise FileNotFoundError(f"gs://{bucket_name}/{key}")
451
+ return blob.download_as_bytes(start=bytes_start, end=bytes_start + num_bytes - 1)
452
+
453
+
454
+ def _get_s3_profile_name(scheme: str) -> Optional[str]:
455
+ if scheme == "s3":
456
+ # For backwards compatibility, we assume S3 uses the default profile if S3_PROFILE is not set.
457
+ return os.environ.get("S3_PROFILE")
458
+ if scheme == "r2":
459
+ profile_name = os.environ.get("R2_PROFILE")
460
+ if profile_name is None:
461
+ raise OLMoEnvironmentError(
462
+ "R2 profile name is not set. Did you forget to set the 'R2_PROFILE' env var?"
463
+ )
464
+
465
+ return profile_name
466
+ if scheme == "weka":
467
+ profile_name = os.environ.get("WEKA_PROFILE")
468
+ if profile_name is None:
469
+ raise OLMoEnvironmentError(
470
+ "Weka profile name is not set. Did you forget to set the 'WEKA_PROFILE' env var?"
471
+ )
472
+
473
+ return profile_name
474
+
475
+ raise NotImplementedError(f"Cannot get profile name for scheme {scheme}")
476
+
477
+
478
+ def _get_s3_endpoint_url(scheme: str) -> Optional[str]:
479
+ if scheme == "s3":
480
+ return None
481
+ if scheme == "r2":
482
+ r2_endpoint_url = os.environ.get("R2_ENDPOINT_URL")
483
+ if r2_endpoint_url is None:
484
+ raise OLMoEnvironmentError(
485
+ "R2 endpoint url is not set. Did you forget to set the 'R2_ENDPOINT_URL' env var?"
486
+ )
487
+
488
+ return r2_endpoint_url
489
+ if scheme == "weka":
490
+ weka_endpoint_url = os.environ.get("WEKA_ENDPOINT_URL")
491
+ if weka_endpoint_url is None:
492
+ raise OLMoEnvironmentError(
493
+ "Weka endpoint url is not set. Did you forget to set the 'WEKA_ENDPOINT_URL' env var?"
494
+ )
495
+
496
+ return weka_endpoint_url
497
+
498
+ raise NotImplementedError(f"Cannot get endpoint url for scheme {scheme}")
499
+
500
+
501
+ @cache
502
+ def _get_s3_client(scheme: str):
503
+ session = boto3.Session(profile_name=_get_s3_profile_name(scheme))
504
+ return session.client(
505
+ "s3",
506
+ endpoint_url=_get_s3_endpoint_url(scheme),
507
+ config=Config(retries={"max_attempts": 10, "mode": "standard"}),
508
+ use_ssl=not int(os.environ.get("OLMO_NO_SSL", "0")),
509
+ )
510
+
511
+
512
+ def _wait_before_retry(attempt: int):
513
+ time.sleep(min(0.5 * 2**attempt, 3.0))
514
+
515
+
516
+ def _s3_upload(
517
+ source: Path, scheme: str, bucket_name: str, key: str, save_overwrite: bool = False, max_attempts: int = 3
518
+ ):
519
+ err: Optional[Exception] = None
520
+ if not save_overwrite:
521
+ for attempt in range(1, max_attempts + 1):
522
+ try:
523
+ _get_s3_client(scheme).head_object(Bucket=bucket_name, Key=key)
524
+ raise FileExistsError(
525
+ f"s3://{bucket_name}/{key} already exists. Use save_overwrite to overwrite it."
526
+ )
527
+ except boto_exceptions.ClientError as e:
528
+ if e.response["ResponseMetadata"]["HTTPStatusCode"] == 404:
529
+ err = None
530
+ break
531
+ err = e
532
+
533
+ if attempt < max_attempts:
534
+ log.warning("%s failed attempt %d with retriable error: %s", _s3_upload.__name__, attempt, err)
535
+ _wait_before_retry(attempt)
536
+
537
+ if err is not None:
538
+ raise OLMoNetworkError(f"Failed to check object existence during {scheme} upload") from err
539
+
540
+ try:
541
+ _get_s3_client(scheme).upload_file(source, bucket_name, key)
542
+ except boto_exceptions.ClientError as e:
543
+ raise OLMoNetworkError(f"Failed to upload to {scheme}") from e
544
+
545
+
546
+ def _s3_file_size(scheme: str, bucket_name: str, key: str, max_attempts: int = 3) -> int:
547
+ err: Optional[Exception] = None
548
+ for attempt in range(1, max_attempts + 1):
549
+ try:
550
+ return _get_s3_client(scheme).head_object(Bucket=bucket_name, Key=key)["ContentLength"]
551
+ except boto_exceptions.ClientError as e:
552
+ if e.response["ResponseMetadata"]["HTTPStatusCode"] == 404:
553
+ raise FileNotFoundError(f"s3://{bucket_name}/{key}") from e
554
+ err = e
555
+
556
+ if attempt < max_attempts:
557
+ log.warning("%s failed attempt %d with retriable error: %s", _s3_file_size.__name__, attempt, err)
558
+ _wait_before_retry(attempt)
559
+
560
+ raise OLMoNetworkError(f"Failed to get {scheme} file size") from err
561
+
562
+
563
+ def _s3_get_bytes_range(
564
+ scheme: str, bucket_name: str, key: str, bytes_start: int, num_bytes: int, max_attempts: int = 3
565
+ ) -> bytes:
566
+ err: Optional[Exception] = None
567
+ for attempt in range(1, max_attempts + 1):
568
+ try:
569
+ return (
570
+ _get_s3_client(scheme)
571
+ .get_object(
572
+ Bucket=bucket_name, Key=key, Range=f"bytes={bytes_start}-{bytes_start + num_bytes - 1}"
573
+ )["Body"]
574
+ .read()
575
+ )
576
+ except boto_exceptions.ClientError as e:
577
+ if e.response["ResponseMetadata"]["HTTPStatusCode"] == 404:
578
+ raise FileNotFoundError(f"{scheme}://{bucket_name}/{key}") from e
579
+ err = e
580
+ except (boto_exceptions.HTTPClientError, boto_exceptions.ConnectionError) as e:
581
+ # ResponseStreamingError (subclass of HTTPClientError) can happen as
582
+ # a result of a failed read from the stream (http.client.IncompleteRead).
583
+ # Retrying can help in this case.
584
+ err = e
585
+
586
+ if attempt < max_attempts:
587
+ log.warning(
588
+ "%s failed attempt %d with retriable error: %s", _s3_get_bytes_range.__name__, attempt, err
589
+ )
590
+ _wait_before_retry(attempt)
591
+
592
+ # When torch's DataLoader intercepts exceptions, it may try to re-raise them
593
+ # by recalling their constructor with a single message arg. Torch has some
594
+ # logic to deal with the absence of a single-parameter constructor, but it
595
+ # doesn't gracefully handle other possible failures in calling such a constructor
596
+ # This can cause an irrelevant exception (e.g. KeyError: 'error'), resulting
597
+ # in us losing the true exception info. To avoid this, we change the exception
598
+ # to a type that has a single-parameter constructor.
599
+ raise OLMoNetworkError(f"Failed to get bytes range from {scheme}") from err
600
+
601
+
602
+ def _s3_find_latest_checkpoint(scheme: str, bucket_name: str, prefix: str) -> Optional[str]:
603
+ if not prefix.endswith("/"):
604
+ prefix = f"{prefix}/"
605
+ response = _get_s3_client(scheme).list_objects(Bucket=bucket_name, Prefix=prefix, Delimiter="/")
606
+ assert not response["IsTruncated"] # need to handle this if it happens
607
+ latest_step = 0
608
+ latest_checkpoint: Optional[str] = None
609
+ for item in response["CommonPrefixes"]:
610
+ prefix = item["Prefix"].strip("/")
611
+ checkpoint_name = os.path.split(prefix)[-1]
612
+ if not checkpoint_name.startswith("step"):
613
+ continue
614
+ try:
615
+ step = int(checkpoint_name.replace("step", "").replace("-unsharded", ""))
616
+ except ValueError:
617
+ continue
618
+ # Make sure the checkpoint dir contains a config, otherwise the checkpoint is incomplete
619
+ # (upload might have have failed part way through).
620
+ try:
621
+ _s3_file_size(scheme, bucket_name, f"{prefix}/config.yaml")
622
+ except FileNotFoundError:
623
+ continue
624
+ # We prioritize sharded checkpoints over unsharded ones.
625
+ if step > latest_step or (step == latest_step and not checkpoint_name.endswith("-unsharded")):
626
+ latest_step = step
627
+ latest_checkpoint = f"{scheme}://{bucket_name}/{prefix}"
628
+ return latest_checkpoint
629
+
630
+
631
+ def _http_file_size(scheme: str, host_name: str, path: str) -> int:
632
+ import requests
633
+
634
+ response = requests.head(f"{scheme}://{host_name}/{path}", allow_redirects=True)
635
+ return int(response.headers.get("content-length"))
636
+
637
+
638
+ def _http_get_bytes_range(scheme: str, host_name: str, path: str, bytes_start: int, num_bytes: int) -> bytes:
639
+ import requests
640
+
641
+ response = requests.get(
642
+ f"{scheme}://{host_name}/{path}", headers={"Range": f"bytes={bytes_start}-{bytes_start+num_bytes-1}"}
643
+ )
644
+ result = response.content
645
+ assert (
646
+ len(result) == num_bytes
647
+ ), f"expected {num_bytes} bytes, got {len(result)}" # Some web servers silently ignore range requests and send everything
648
+ return result
649
+
650
+
651
+ def default_thread_count() -> int:
652
+ return int(os.environ.get("OLMO_NUM_THREADS") or min(32, (os.cpu_count() or 1) + 4))
653
+
654
+
655
+ def pass_through_fn(fn, *args, **kwargs):
656
+ return fn(*args, **kwargs)
657
+
658
+
659
+ def threaded_generator(g, maxsize: int = 16, thread_name: Optional[str] = None):
660
+ q: Queue = Queue(maxsize=maxsize)
661
+
662
+ sentinel = object()
663
+
664
+ def fill_queue():
665
+ try:
666
+ for value in g:
667
+ q.put(value)
668
+ except Exception as e:
669
+ q.put(e)
670
+ finally:
671
+ q.put(sentinel)
672
+
673
+ thread_name = thread_name or repr(g)
674
+ thread = Thread(name=thread_name, target=fill_queue, daemon=True)
675
+ thread.start()
676
+
677
+ for x in iter(q.get, sentinel):
678
+ if isinstance(x, Exception):
679
+ raise OLMoThreadError(f"generator thread {thread_name} failed") from x
680
+ else:
681
+ yield x
682
+
683
+
684
+ def split_dict_of_list(batch, split_size):
685
+ out = None
686
+ for key, val in batch.items():
687
+ parts = split_list(val, split_size)
688
+ if out is None:
689
+ out = [{key: part} for part in parts]
690
+ else:
691
+ assert len(out) == len(parts)
692
+ for out_dict, part in zip(out, parts):
693
+ out_dict[key] = part
694
+ return out
695
+
696
+
697
+ def split_list(lst, split_size):
698
+ assert len(lst) % split_size == 0
699
+ n = len(lst) // split_size
700
+ return [lst[i*split_size:(i+1)*split_size] for i in range(n)]
701
+
702
+
703
+ def flatten_list(lst):
704
+ return [x for xs in lst for x in xs]
705
+
706
+
707
+ def roundrobin(*iterables):
708
+ """
709
+ Call the given iterables in a round-robin fashion. For example:
710
+ ``roundrobin('ABC', 'D', 'EF') --> A D E B F C``
711
+ """
712
+ # Adapted from https://docs.python.org/3/library/itertools.html#itertools-recipes
713
+ num_active = len(iterables)
714
+ nexts = cycle(iter(it).__next__ for it in iterables)
715
+ while num_active:
716
+ try:
717
+ for next in nexts:
718
+ yield next()
719
+ except StopIteration:
720
+ # Remove the iterator we just exhausted from the cycle.
721
+ num_active -= 1
722
+ nexts = cycle(islice(nexts, num_active))
723
+
724
+
725
+ def add_cached_path_clients():
726
+ add_scheme_client(WekaClient)
727
+
728
+
729
+ class WekaClient(SchemeClient):
730
+ recoverable_errors = SchemeClient.recoverable_errors + (
731
+ boto_exceptions.HTTPClientError,
732
+ boto_exceptions.ConnectionError,
733
+ )
734
+
735
+ scheme = "weka"
736
+
737
+ def __init__(self, resource: str) -> None:
738
+ SchemeClient.__init__(self, resource)
739
+ self.bucket_name, self.path = WekaClient._split_cloud_path(resource, "weka")
740
+ self.s3 = _get_s3_client("weka")
741
+ self.object_info = None
742
+
743
+ @staticmethod
744
+ def _split_cloud_path(url: str, provider: str) -> Tuple[str, str]:
745
+ """Split a full s3 path into the bucket name and path."""
746
+ from urllib.parse import urlparse
747
+
748
+ parsed = urlparse(url)
749
+ if not parsed.netloc or not parsed.path:
750
+ raise ValueError("bad {} path {}".format(provider, url))
751
+ bucket_name = parsed.netloc
752
+ provider_path = parsed.path
753
+ # Remove '/' at beginning of path.
754
+ if provider_path.startswith("/"):
755
+ provider_path = provider_path[1:]
756
+ return bucket_name, provider_path
757
+
758
+ def _ensure_object_info(self):
759
+ if self.object_info is None:
760
+ try:
761
+ self.object_info = self.s3.head_object(Bucket=self.bucket_name, Key=self.path)
762
+ except boto_exceptions.ClientError as e:
763
+ if e.response["ResponseMetadata"]["HTTPStatusCode"] == 404:
764
+ raise FileNotFoundError(f"weka://{self.bucket_name}/{self.path}") from e
765
+ raise e
766
+
767
+ def get_etag(self) -> Optional[str]:
768
+ self._ensure_object_info()
769
+ assert self.object_info is not None
770
+ return self.object_info.get("ETag")
771
+
772
+ def get_size(self) -> Optional[int]:
773
+ self._ensure_object_info()
774
+ assert self.object_info is not None
775
+ return self.object_info.get("ContentLength")
776
+
777
+ def get_resource(self, temp_file: io.BufferedWriter) -> None:
778
+ self.s3.download_fileobj(Fileobj=temp_file, Bucket=self.bucket_name, Key=self.path)
779
+
780
+ def get_bytes_range(self, index: int, length: int) -> bytes:
781
+ response = self.s3.get_object(
782
+ Bucket=self.bucket_name, Key=self.path, Range=f"bytes={index}-{index+length-1}"
783
+ )
784
+ return response["Body"].read()
785
+