File size: 2,455 Bytes
6cbeb1e 3fd2261 6cbeb1e b7e57d5 6cbeb1e 3fd2261 6cbeb1e 3fd2261 6cbeb1e 3fd2261 6cbeb1e 3fd2261 6cbeb1e 3fd2261 6cbeb1e 3fd2261 6cbeb1e 3fd2261 6cbeb1e 3fd2261 6cbeb1e 3fd2261 6cbeb1e 3fd2261 8419a6d 6cbeb1e 3fd2261 6cbeb1e 3fd2261 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
license: apache-2.0
language:
- en
tags:
- moe
- olmo
- olmoe
co2_eq_emissions: 1
---
<img alt="OLMoE Logo." src="olmoe-logo.png" width="250px">
# Model Summary
> OLMoE-1B-7B-Instruct is a Mixture-of-Experts LLM with 1B active and 7B total parameters released in August 2024 (0824) that has been adapted via SFT and DPO from [OLMoE-1B-7B](https://hf.co/OLMoE/OLMoE-1B-7B-0824). It yields state-of-the-art performance among models with a similar cost (1B) and is competitive with much larger models like Llama2-13B-Chat. OLMoE is 100% open-source.
- Code: https://github.com/allenai/OLMoE
- Paper:
- Logs: https://github.com/allenai/OLMoE/blob/main/logs/olmoe-dpo-logs.txt
# Use
Install the `transformers` & `torch` libraries and run:
```python
from transformers import OlmoeForCausalLM, AutoTokenizer
import torch
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Load different ckpts via passing e.g. `revision=step10000-tokens41B`
model = OlmoeForCausalLM.from_pretrained("OLMoE/OLMoE-1B-7B-Instruct").to(DEVICE)
tokenizer = AutoTokenizer.from_pretrained("OLMoE/OLMoE-1B-7B-Instruct")
message = [{"role": "user", "content": "Explain to me like I'm five what is Bitcoin."}]
inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
out = model.generate(**inputs, max_length=64)
print(tokenizer.decode(out[0]))
# > # Bitcoin is a digital currency that is created and held electronically. No one controls it. Bitcoins aren’t printed, like dollars or euros – they’re produced by people and businesses running computers all around the world, using software that solves mathematical
```
You can list all revisions/branches by installing `huggingface-hub` & running:
```python
from huggingface_hub import list_repo_refs
out = list_repo_refs("OLMoE/OLMoE-1B-7B-0824")
branches = [b.name for b in out.branches]
```
Important branches:
- `main`: Preference tuned via DPO model of https://hf.co/OLMoE/OLMoE-1B-7B-0824-SFT (`main` branch)
- `no-load-balancing`: Ablation without load balancing loss during DPO starting from the `no-load-balancing` branch of https://hf.co/OLMoE/OLMoE-1B-7B-0824-SFT
- `non-annealed`: Ablation starting from the `non-annealed` branch of https://hf.co/OLMoE/OLMoE-1B-7B-0824-SFT which is an SFT of the pretraining checkpoint prior to annealing (branch `step1200000-tokens5033B` of https://hf.co/OLMoE/OLMoE-1B-7B-0824)
# Citation
```bibtex
TODO
``` |