Safetensors
English
llama
hamishivi commited on
Commit
37212c0
·
verified ·
1 Parent(s): cc35de7

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +136 -0
README.md ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ model-index:
3
+ - name: allenai/tulu-v2.5-llama3-8b-uf-mean-70b-uf-rm
4
+ results: []
5
+ datasets:
6
+ - allenai/tulu-2.5-preference-data
7
+ - allenai/tulu-v2-sft-mixture
8
+ language:
9
+ - en
10
+ base_model: allenai/llama-3-tulu-2-8b
11
+ license: apache-2.0
12
+ ---
13
+ <center>
14
+ <img src="https://huggingface.co/datasets/allenai/blog-images/resolve/main/tulu-2.5/tulu_25_banner.png" alt="Tulu 2.5 banner image" width="800px"/>
15
+ </center>
16
+
17
+ # Model Card for Tulu V2.5 PPO 13B - UltraFeedback Mean w. 70B UltraFeedback RM
18
+
19
+ Tulu is a series of language models that are trained to act as helpful assistants.
20
+ Tulu V2.5 is a series of models trained using DPO and PPO starting from the [Tulu 2 suite](https://huggingface.co/collections/allenai/tulu-v2-suite-6551b56e743e6349aab45101).
21
+ This model is trained on the UltraFeedback dataset (using the per-aspect/fine-grained scores for deciding chosen and rejected) using PPO.
22
+ We used a 8B RM trained on the UltraFeedback dataset, and then used the UltraFeedback prompts during PPO training.
23
+
24
+ This is part of a small update to the original V2.5 suite, adding some Llama 3-based models. We add three models:
25
+ - [allenai/tulu-v2.5-llama3-8b-uf-mean-8b-uf-rm](https://huggingface.co/allenai/tulu-v2.5-llama3-8b-uf-mean-8b-uf-rm)
26
+ - [allenai/tulu-v2.5-llama3-8b-uf-mean-70b-uf-rm-mixed-prompts](https://huggingface.co/allenai/tulu-v2.5-llama3-8b-uf-mean-70b-uf-rm-mixed-prompts)
27
+ - [allenai/tulu-v2.5-llama3-8b-uf-mean-70b-uf-rm](https://huggingface.co/allenai/tulu-v2.5-llama3-8b-uf-mean-70b-uf-rm-mixed-prompts) (best overall model, this model)
28
+
29
+ For more details, read the paper:
30
+ [Unpacking DPO and PPO: Disentangling Best Practices for Learning from Preference Feedback](https://arxiv.org/abs/2406.09279).
31
+
32
+
33
+ ## .Model description
34
+
35
+ - **Model type:** One model belonging to a suite of RLHF tuned chat models on a mix of publicly available, synthetic and human-created datasets.
36
+ - **Language(s) (NLP):** English
37
+ - **License:** Apache 2.0.
38
+ - **Finetuned from model:** [meta-llama/Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf)
39
+
40
+ ### Model Sources
41
+
42
+ - **Repository:** https://github.com/allenai/open-instruct
43
+ - **Dataset:** Data used to train this model can be found [here](https://huggingface.co/datasets/allenai/tulu-2.5-preference-data) - specifically the `ultrafeedback_mean_aspects` split. Only the prompts were used.
44
+ - **Model Family:** The collection of related models can be found [here](https://huggingface.co/collections/allenai/tulu-v25-suite-66676520fd578080e126f618).
45
+ - **Reward Model:** The reward model used during PPO training can be found [here](https://huggingface.co/allenai/llama-3-tulu-2-8b-uf-mean-rm), and the data used to train it [here](https://huggingface.co/datasets/allenai/tulu-2.5-preference-data) - specifically the `ultrafeedback_mean_aspects` split.
46
+
47
+ ## Results
48
+
49
+ This is a model trained on Llama 3 as an update to the Tulu v2.5 suite.
50
+ For details on training and evaluation, read [our paper](https://arxiv.org/abs/2406.09279)!
51
+
52
+
53
+ | Model | Size | Alignment | GSM8k 8-shot CoT Acc. | AlpacaEval 2 Winrate (LC) |
54
+ |-|-|-|-|-|
55
+ | **Tulu V2.5 PPO Llama 3 70B (this model)** | 8B | PPO with 8B RM | 48.5 | **28.8** |
56
+ | **Tulu V2.5 PPO 13B** | 13B | PPO with 70B RM | 67.0 | 26.7 |
57
+ | **Tulu V2 DPO 13B** | 13B | DPO | 50.5 | 16.0 |
58
+ | **Tulu V2 SFT 13B** | 13B | - | 46.0 | 10.4 |
59
+ | **Tulu V2 DPO 70B** | 70B | DPO | **71.5** | 21.2 |
60
+
61
+ ## Input Format
62
+
63
+ The model is trained to use the following format (note the newlines):
64
+ ```
65
+ <|user|>
66
+ Your message here!
67
+ <|assistant|>
68
+ ```
69
+
70
+ For best results, format all inputs in this manner. **Make sure to include a newline after `<|assistant|>`, this can affect generation quality quite a bit.**
71
+ We have included a [chat template](https://huggingface.co/docs/transformers/main/en/chat_templating) in the tokenizer implementing this template.
72
+
73
+ ## Model Family
74
+
75
+ [Preference Data](https://huggingface.co/datasets/allenai/tulu-2.5-preference-data), [Prompts Data](https://huggingface.co/datasets/allenai/tulu-2.5-prompts) | DPO Models | PPO Models | Reward Models | Value Models |
76
+ |-------------|-------------|-------------|---------------|---------------|
77
+ | ultrafeedback_mean_aspects | [tulu-v2.5-dpo-13b-uf-mean](https://huggingface.co/allenai/tulu-v2.5-dpo-13b-uf-mean) | [tulu-v2.5-ppo-13b-uf-mean-70b-uf-rm](https://huggingface.co/allenai/tulu-v2.5-ppo-13b-uf-mean-70b-uf-rm) | [tulu-v2.5-70b-uf-rm](https://huggingface.co/allenai/tulu-v2.5-70b-uf-rm) | [tulu-v2.5-ppo-13b-uf-mean-70b-uf-rm-value](https://huggingface.co/allenai/tulu-v2.5-ppo-13b-uf-mean-70b-uf-rm-value) |
78
+ | preference_big_mixture | = | [tulu-v2.5-ppo-13b-uf-mean-13b-mix-rm](https://huggingface.co/allenai/tulu-v2.5-ppo-13b-uf-mean-13b-mix-rm) | [tulu-v2.5-13b-preference-mix-rm](https://huggingface.co/allenai/tulu-v2.5-13b-preference-mix-rm) | [tulu-v2.5-ppo-13b-uf-mean-13b-mix-rm-value](https://huggingface.co/allenai/tulu-v2.5-ppo-13b-uf-mean-13b-mix-rm-value) |
79
+ | preference_big_mixture | = | [tulu-v2.5-ppo-13b-uf-mean-70b-mix-rm](https://huggingface.co/allenai/tulu-v2.5-ppo-13b-uf-mean-70b-mix-rm) | [tulu-v2.5-70b-preference-mix-rm](https://huggingface.co/allenai/tulu-v2.5-70b-preference-mix-rm) | [tulu-v2.5-ppo-13b-uf-mean-70b-mix-rm-value](https://huggingface.co/allenai/tulu-v2.5-ppo-13b-uf-mean-70b-mix-rm-value) |
80
+ | ultrafeedback_mean_aspects | = | [tulu-v2.5-ppo-13b-uf-mean](https://huggingface.co/allenai/tulu-v2.5-ppo-13b-uf-mean) | [tulu-v2.5-13b-uf-rm](https://huggingface.co/allenai/tulu-v2.5-13b-uf-rm) | [tulu-v2.5-ppo-13b-uf-mean-13b-uf-rm-value](https://huggingface.co/allenai/tulu-v2.5-ppo-13b-uf-mean-13b-uf-rm-value) |
81
+ | ultrafeedback_mean_aspects | = | [tulu-v2.5-ppo-13b-uf-mean-70b-uf-rm-mixed-prompts](https://huggingface.co/allenai/tulu-v2.5-ppo-13b-uf-mean-70b-uf-rm-mixed-prompts) | [tulu-v2.5-70b-uf-rm](https://huggingface.co/allenai/tulu-v2.5-70b-uf-rm) * with extra prompts | [tulu-v2.5-ppo-13b-uf-mean-70b-uf-rm-mixed-prompts-value](https://huggingface.co/allenai/tulu-v2.5-ppo-13b-uf-mean-70b-uf-rm-mixed-prompts-value) |
82
+ | hh_rlhf_60k | [tulu-v2.5-dpo-13b-hh-rlhf-60k](https://huggingface.co/allenai/tulu-v2.5-dpo-13b-hh-rlhf-60k) | [tulu-v2.5-ppo-13b-hh-rlhf-60k](https://huggingface.co/allenai/tulu-v2.5-ppo-13b-hh-rlhf-60k) | [tulu-v2.5-13b-hh-rlhf-60k-rm](https://huggingface.co/allenai/tulu-v2.5-13b-hh-rlhf-60k-rm) | |
83
+ | chatbot_arena_2023 | [tulu-v2.5-dpo-13b-chatbot-arena-2023](https://huggingface.co/allenai/tulu-v2.5-dpo-13b-chatbot-arena-2023) | [tulu-v2.5-ppo-13b-chatbot-arena-2023](https://huggingface.co/allenai/tulu-v2.5-ppo-13b-chatbot-arena-2023) | [tulu-v2.5-13b-chatbot-arena-2023-rm](https://huggingface.co/allenai/tulu-v2.5-13b-chatbot-arena-2023-rm) | |
84
+ | stack_exchange_60k | [tulu-v2.5-dpo-13b-stackexchange-60k](https://huggingface.co/allenai/tulu-v2.5-dpo-13b-stackexchange-60k) | [tulu-v2.5-ppo-13b-stackexchange-60k](https://huggingface.co/allenai/tulu-v2.5-ppo-13b-stackexchange-60k) | [tulu-v2.5-13b-stackexchange-60k-rm](https://huggingface.co/allenai/tulu-v2.5-13b-stackexchange-60k-rm) | |
85
+ | nectar_60k | N/A | [tulu-v2.5-ppo-13b-nectar-60k](https://huggingface.co/allenai/tulu-v2.5-ppo-13b-nectar-60k) | [tulu-v2.5-13b-nectar-60k-rm](https://huggingface.co/allenai/tulu-v2.5-13b-nectar-60k-rm) | |
86
+ | nectar | [tulu-v2.5-dpo-13b-nectar](https://huggingface.co/allenai/tulu-v2.5-dpo-13b-nectar) | | | |
87
+ | helpsteer | [tulu-v2.5-dpo-13b-helpsteer](https://huggingface.co/allenai/tulu-v2.5-dpo-13b-helpsteer) | | | |
88
+ | shp2 | [tulu-v2.5-dpo-13b-shp2](https://huggingface.co/allenai/tulu-v2.5-dpo-13b-shp2) | | | |
89
+ | stack_exchange_paired | [tulu-v2.5-dpo-13b-stackexchange](https://huggingface.co/allenai/tulu-v2.5-dpo-13b-stackexchange) | | | |
90
+ | ultrafeedback_overall | [tulu-v2.5-dpo-13b-uf-overall](https://huggingface.co/allenai/tulu-v2.5-dpo-13b-uf-overall) | | | |
91
+ | capybara | [tulu-v2.5-dpo-13b-capybara](https://huggingface.co/allenai/tulu-v2.5-dpo-13b-capybara) | | | |
92
+ | prm800k_pairs_phase2 | [tulu-v2.5-dpo-13b-prm-phase-2](https://huggingface.co/allenai/tulu-v2.5-dpo-13b-prm-phase-2) | | | |
93
+ | hh_rlhf | [tulu-v2.5-dpo-13b-hh-rlhf](https://huggingface.co/allenai/tulu-v2.5-dpo-13b-hh-rlhf) | | | |
94
+ | chatbot_arena_2024 | [tulu-v2.5-dpo-13b-chatbot-arena-2024](https://huggingface.co/allenai/tulu-v2.5-dpo-13b-chatbot-arena-2024) | | | |
95
+ | alpaca_farm_human_pref | [tulu-v2.5-dpo-13b-alpacafarm-human-pref](https://huggingface.co/allenai/tulu-v2.5-dpo-13b-alpacafarm-human-pref) | | | |
96
+ | alpaca_farm_gpt4_pref | [tulu-v2.5-dpo-13b-alpacafarm-gpt4-pref](https://huggingface.co/allenai/tulu-v2.5-dpo-13b-alpacafarm-gpt4-pref) | | | |
97
+ | orca_dpo_pairs | [tulu-v2.5-dpo-13b-argilla-orca-pairs](https://huggingface.co/allenai/tulu-v2.5-dpo-13b-argilla-orca-pairs) | | | |
98
+
99
+ *The extra prompts are all the prompts in the prompts dataset. Default only uses the split `ultrafeedback_prompts`.
100
+
101
+ ## Intended uses & limitations
102
+
103
+ The model was initially fine-tuned on a filtered and preprocessed of the [Tulu V2 mix dataset](https://huggingface.co/datasets/allenai/tulu-v2-sft-mixture), which contains a diverse range of human created instructions and synthetic dialogues generated primarily by other LLMs.
104
+ We then further aligned the model with a [Jax DPO trainer](https://github.com/hamishivi/EasyLM/blob/main/EasyLM/models/llama/llama_train_dpo.py) built on [EasyLM](https://github.com/young-geng/EasyLM) on the dataset mentioned above.
105
+
106
+ ## Bias, Risks, and Limitations
107
+
108
+ The Tulu models have not been aligned to generate safe completions within the RLHF phase or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so).
109
+ It is also unknown what the size and composition of the corpus was used to train the base Llama 2 models, however it is likely to have included a mix of Web data and technical sources like books and code. See the [Falcon 180B model card](https://huggingface.co/tiiuae/falcon-180B#training-data) for an example of this.
110
+
111
+
112
+ ### Training hyperparameters
113
+
114
+ The following hyperparameters were used during PPO training:
115
+ - learning_rate: 1e-06
116
+ - total_train_batch_size: 64
117
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
118
+ - lr_scheduler_type: linear
119
+ - lr_scheduler_warmup_ratio: 0.1
120
+ - num_epochs: 1.0
121
+ - KL penalty coefficient: 0.05
122
+
123
+ ## Citation
124
+
125
+ If you find Tulu 2.5 is useful in your work, please cite it with:
126
+
127
+ ```
128
+ @misc{ivison2024unpacking,
129
+ title={{Unpacking DPO and PPO: Disentangling Best Practices for Learning from Preference Feedback}},
130
+ author={{Hamish Ivison and Yizhong Wang and Jiacheng Liu and Ellen Wu and Valentina Pyatkin and Nathan Lambert and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi}}
131
+ year={2024},
132
+ eprint={2406.09279},
133
+ archivePrefix={arXiv},
134
+ primaryClass={cs.CL}
135
+ }
136
+ ```