Text Generation
Transformers
PyTorch
Safetensors
English
llama
conversational
text-generation-inference
Inference Endpoints
File size: 6,681 Bytes
1c860d7
9b9d8d5
 
 
 
 
c4994a7
9b9d8d5
 
 
1c860d7
 
 
 
 
 
9b9d8d5
 
bc6c48f
 
 
9b9d8d5
 
 
 
 
 
 
bc6c48f
9b9d8d5
 
 
 
b793599
1c19b68
9b9d8d5
 
 
4c937e6
9b9d8d5
 
 
22c150c
 
9b9d8d5
 
 
 
 
 
22c150c
 
9b9d8d5
 
 
 
 
 
22c150c
 
9b9d8d5
 
 
 
 
 
 
4c937e6
0709c67
 
9b9d8d5
4c937e6
9b9d8d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c937e6
1c860d7
 
 
 
 
9b9d8d5
 
1c860d7
 
9b9d8d5
1c860d7
4c937e6
9b9d8d5
 
 
 
 
 
1c860d7
 
9b9d8d5
1c860d7
4c937e6
1c860d7
9b9d8d5
4c937e6
 
 
 
 
 
 
9b9d8d5
1c860d7
8584877
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
---
model-index:
- name: tulu-2-dpo-70b
  results: []
datasets:
- HuggingFaceH4/ultrafeedback_binarized
- allenai/tulu-v2-sft-mixture
language:
- en
base_model: meta-llama/Llama-2-70b-hf
---


<img src="https://huggingface.co/datasets/allenai/blog-images/resolve/main/tulu-v2/Tulu%20V2%20banner.png" alt="TuluV2 banner" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>


# Model Card for Tulu V2 DPO 70B

Tulu is a series of language models that are trained to act as helpful assistants. 
Tulu V2 DPO 70B, and is a fine-tuned version of Llama 2 that was trained on on a mix of publicly available, synthetic and human datasets using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290). 
This model is a strong alternative to Llama 2 70b Chat.


## Model description

- **Model type:** The flagship model of a suite of instruction and RLHF tuned chat models on a mix of publicly available, synthetic and human-created datasets.
- **Language(s) (NLP):** Primarily English
- **License:** MIT
- **Finetuned from model:** [meta-llama/Llama-2-70b-hf](https://huggingface.co/meta-llama/Llama-2-70b-hf)

### Model Sources

- **Repository:** https://github.com/allenai/https://github.com/allenai/open-instruct
- **DPO Recipe:** The DPO recipe is from the [Zephyr Beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) model
- **Model Family:** Other models and the dataset are found in the [Tulu V2 collection](https://huggingface.co/collections/allenai/tulu-v2-suite-6551b56e743e6349aab45101).

## Performance

At the time of release, the Tulu-v2-dpo-70b model is approximately equal to GPT4 on AlpacaEval, and has a score of 7.89 on MT-Bench.
All smaller DPO'd models have strong performance per model size in the category and with lower verbosity (average completion length).
| Model | Size | Alignment | MT-Bench (score) | AlpacaEval (win rate %) |
|-------------|-----|----|---------------|--------------|
| **Tulu-v2-7b** 🐪 | **7B** | **dDPO** | **6.30** | **73.9** |
| **Tulu-v2-dpo-7b** 🐪 | **7B** | **dDPO** | **6.27** | **85.1** |
| StableLM-Tuned-α | 7B| dSFT |2.75| -|
| MPT-Chat |  7B |dSFT |5.42| -|
| Xwin-LMv0.1 | 7B| dPPO| 6.19| 87.83|
| Mistral-Instructv0.1 | 7B|  - | 6.84 |-|
| Zephyr-7b-α |7B|  dDPO| 6.88| -|
| Zephyr-7b-β 🪁 | 7B | dDPO | 7.34 | 90.60 |
| **Tulu-v2-13b** 🐪 | **13B** | **dDPO** | **6.70** | **78.9** |
| **Tulu-v2-dpo-13b** 🐪 | **13B** | **dDPO** | **7.00** | **89.5** |
| Falcon-Instruct |  40B |dSFT |5.17 |45.71|
| Guanaco | 65B |  SFT |6.41| 71.80|
| Llama2-Chat |  70B |RLHF |6.86| 92.66|
| Vicuna v1.3 |  33B |dSFT |7.12 |88.99|
| WizardLM v1.0 |  70B |dSFT |7.71 |-|
| Xwin-LM v0.1 |   70B |dPPO |- |95.57|
| **Tulu-v2-70b** 🐪 | **70B** | **dDPO** | **7.49** | **86.6** |
| **Tulu-v2-dpo-70b** 🐪 | **70B** | **dDPO** | **7.89** | **95.1** |
| GPT-3.5-turbo | - |RLHF |7.94 |89.37|
| Claude 2 |  - |RLHF |8.06| 91.36|
| GPT-4 |  -| RLHF |8.99| 95.28|


## Intended uses & limitations

The model was initially fine-tuned on a filtered and preprocessed of the [Tulu V2 mix dataset](https://huggingface.co/datasets/allenai/tulu-v2-sft-mixture), which contains a diverse range of human created instructions and synthetic dialogues generated primarily by other LLMs. 
We then further aligned the model with a [Jax DPO trainer](https://github.com/hamishivi/EasyLM/blob/main/EasyLM/models/llama/llama_train_dpo.py) built on [EasyLM](https://github.com/young-geng/EasyLM) on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contains 64k prompts and model completions that are ranked by GPT-4. 


<!--  You can find the datasets used for training Tulu V2 [here]() 

Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:

```python
# Install transformers from source - only needed for versions <= v4.34
# pip install git+https://github.com/huggingface/transformers.git
# pip install accelerate

import torch
from transformers import pipeline

pipe = pipeline("text-generation", model="HuggingFaceH4/tulu-2-dpo-70b", torch_dtype=torch.bfloat16, device_map="auto")

# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
    {
        "role": "system",
        "content": "You are a friendly chatbot who always responds in the style of a pirate",
    },
    {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
# <|system|>
# You are a friendly chatbot who always responds in the style of a pirate.</s>
# <|user|>
# How many helicopters can a human eat in one sitting?</s>
# <|assistant|>
# Ah, me hearty matey! But yer question be a puzzler! A human cannot eat a helicopter in one sitting, as helicopters are not edible. They be made of metal, plastic, and other materials, not food!
```-->

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

The Tulu models have not been aligned to generate safe completions within the RLHF phase or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). 
It is also unknown what the size and composition of the corpus was used to train the base Llama 2 models, however it is likely to have included a mix of Web data and technical sources like books and code. See the [Falcon 180B model card](https://huggingface.co/tiiuae/falcon-180B#training-data) for an example of this.


### Training hyperparameters

The following hyperparameters were used during DPO training:
- learning_rate: 5e-07
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0


## Citation

If you find Tulu 2 is useful in your work, please cite it with:

```
@misc{ivison2023changing,
   title={Camels in a Changing Climate: Enhancing LM Adaptation with Tulu 2}, 
   author={Hamish Ivison and Yizhong Wang and Valentina Pyatkin and Nathan Lambert and Matthew Peters and Pradeep Dasigi and Joel Jang and David Wadden and Noah A. Smith and Iz Beltagy and Hannaneh Hajishirzi},
   year={2023},
   archivePrefix={arXiv},
   primaryClass={cs.CL}
}
```

*Model card adapted from [Zephyr Beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta/blob/main/README.md)*