--- language: - en license: apache-2.0 tags: - generated_from_trainer base_model: openai/whisper-small datasets: - Jzuluaga/atcosim_corpus metrics: - wer model-index: - name: Whisper Base ATCOSIM results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: atcosim_corpus type: Jzuluaga/atcosim_corpus args: 'config: en, split: test' metrics: - type: wer value: 4.914301017675415 name: Wer --- # Whisper Base ATCOSIM This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the atcosim_corpus dataset. It achieves the following results on the evaluation set: - Loss: 0.0770 - Wer: 4.9143 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 1.882 | 0.2092 | 100 | 1.5290 | 67.4143 | | 0.4334 | 0.4184 | 200 | 0.4251 | 26.2587 | | 0.1883 | 0.6276 | 300 | 0.2218 | 15.5932 | | 0.1259 | 0.8368 | 400 | 0.1487 | 10.9869 | | 0.0713 | 1.0460 | 500 | 0.1168 | 9.4135 | | 0.0446 | 1.2552 | 600 | 0.1036 | 7.5656 | | 0.0652 | 1.4644 | 700 | 0.0919 | 6.3203 | | 0.0508 | 1.6736 | 800 | 0.0829 | 5.1152 | | 0.038 | 1.8828 | 900 | 0.0776 | 4.9009 | | 0.0186 | 2.0921 | 1000 | 0.0770 | 4.9143 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1