--- language: - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - Jzuluaga/atcosim_corpus metrics: - wer model-index: - name: Whisper Base ATCOSIM results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: atcosim_corpus_numbers_converted type: Jzuluaga/atcosim_corpus args: 'config: en, split: test' metrics: - name: Wer type: wer value: 8.400080770007404 --- # Whisper Base ATCOSIM This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the atcosim_corpus_numbers_converted dataset. It achieves the following results on the evaluation set: - Loss: 0.0493 - Wer: 8.4001 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 1.5879 | 0.2092 | 100 | 1.3381 | 79.2825 | | 0.6066 | 0.4184 | 200 | 0.5917 | 21.4916 | | 0.1067 | 0.6276 | 300 | 0.1257 | 15.2319 | | 0.0632 | 0.8368 | 400 | 0.0855 | 15.0973 | | 0.0366 | 1.0460 | 500 | 0.0768 | 11.7655 | | 0.0184 | 1.2552 | 600 | 0.0685 | 15.9992 | | 0.0345 | 1.4644 | 700 | 0.0629 | 9.5578 | | 0.0279 | 1.6736 | 800 | 0.0543 | 9.8607 | | 0.0186 | 1.8828 | 900 | 0.0499 | 9.6655 | | 0.0067 | 2.0921 | 1000 | 0.0493 | 8.4001 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1