--- license: apache-2.0 tags: - moe - frankenmoe - merge - mergekit - lazymergekit - mohsenfayyaz/Meta-Llama-3-8B-Instruct_esnli_5000_1ep - Malikeh1375/llama-3-base-instruct-slerp base_model: - mohsenfayyaz/Meta-Llama-3-8B-Instruct_esnli_5000_1ep - Malikeh1375/llama-3-base-instruct-slerp --- # Lamma3merge-15B-MoE Lamma3merge-15B-MoE is a Mixture of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [mohsenfayyaz/Meta-Llama-3-8B-Instruct_esnli_5000_1ep](https://huggingface.co/mohsenfayyaz/Meta-Llama-3-8B-Instruct_esnli_5000_1ep) * [Malikeh1375/llama-3-base-instruct-slerp](https://huggingface.co/Malikeh1375/llama-3-base-instruct-slerp) ## 🧩 Configuration ```yaml base_model: mohsenfayyaz/Meta-Llama-3-8B-Instruct_esnli_5000_1ep experts: - source_model: mohsenfayyaz/Meta-Llama-3-8B-Instruct_esnli_5000_1ep positive_prompts: ["why"] - source_model: Malikeh1375/llama-3-base-instruct-slerp positive_prompts: ["mhat"] ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "allknowingroger/Lamma3merge-15B-MoE" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```