File size: 1,658 Bytes
1f5d132 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
license: apache-2.0
tags:
- moe
- frankenmoe
- merge
- mergekit
- lazymergekit
- johnsnowlabs/JSL-MedLlama-3-8B-v1.0
- Weyaxi/Einstein-v6.1-Llama3-8B
base_model:
- johnsnowlabs/JSL-MedLlama-3-8B-v1.0
- Weyaxi/Einstein-v6.1-Llama3-8B
---
# Llama3medical-15B-MoE
Llama3medical-15B-MoE is a Mixture of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [johnsnowlabs/JSL-MedLlama-3-8B-v1.0](https://huggingface.co/johnsnowlabs/JSL-MedLlama-3-8B-v1.0)
* [Weyaxi/Einstein-v6.1-Llama3-8B](https://huggingface.co/Weyaxi/Einstein-v6.1-Llama3-8B)
## 🧩 Configuration
```yaml
base_model: johnsnowlabs/JSL-MedLlama-3-8B-v1.0
experts:
- source_model: johnsnowlabs/JSL-MedLlama-3-8B-v1.0
positive_prompts: ["medical"]
- source_model: Weyaxi/Einstein-v6.1-Llama3-8B
positive_prompts: ["what"]
```
## 💻 Usage
```python
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "allknowingroger/Llama3medical-15B-MoE"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` |