--- license: apache-2.0 tags: - moe - frankenmoe - merge - mergekit - lazymergekit - allknowingroger/MultiMerge-7B-slerp - allknowingroger/RogerMerge-7B-slerp base_model: - allknowingroger/MultiMerge-7B-slerp - allknowingroger/RogerMerge-7B-slerp --- # Rogermerge2-12B-MoE Rogermerge2-12B-MoE is a Mixture of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [allknowingroger/MultiMerge-7B-slerp](https://huggingface.co/allknowingroger/MultiMerge-7B-slerp) * [allknowingroger/RogerMerge-7B-slerp](https://huggingface.co/allknowingroger/RogerMerge-7B-slerp) ## 🧩 Configuration ```yaml base_model: allknowingroger/MultiMerge-7B-slerp experts: - source_model: allknowingroger/MultiMerge-7B-slerp positive_prompts: ["what"] - source_model: allknowingroger/RogerMerge-7B-slerp positive_prompts: ["why"] ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "allknowingroger/Rogermerge2-12B-MoE" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```