wissamantoun
commited on
Upload folder using huggingface_hub
Browse files- README.md +282 -0
- all_results.json +15 -0
- config.json +36 -0
- eval_results.json +9 -0
- logs/events.out.tfevents.1724580883.nefgpu48.211636.0 +3 -0
- logs/events.out.tfevents.1724582205.nefgpu48.211636.1 +3 -0
- model.safetensors +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- train_results.json +9 -0
- trainer_state.json +173 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,282 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: fr
|
3 |
+
license: mit
|
4 |
+
tags:
|
5 |
+
- roberta
|
6 |
+
- text-classification
|
7 |
+
- review-classification
|
8 |
+
base_model: almanach/camembertv2-base
|
9 |
+
datasets:
|
10 |
+
- FLUE-CLS
|
11 |
+
metrics:
|
12 |
+
- accuracy
|
13 |
+
pipeline_tag: text-classification
|
14 |
+
library_name: transformers
|
15 |
+
widget:
|
16 |
+
# example for the french classification model
|
17 |
+
- text: "Le livre est très intéressant et j'ai appris beaucoup de choses."
|
18 |
+
example_title: Books Review
|
19 |
+
- text: "Le film était ennuyeux et je n'ai pas aimé les acteurs."
|
20 |
+
example_title: DVD Review
|
21 |
+
- text: "La musique était très bonne et j'ai adoré les paroles."
|
22 |
+
example_title: Music Review
|
23 |
+
model-index:
|
24 |
+
- name: almanach/camembertv2-base-cls
|
25 |
+
results:
|
26 |
+
- task:
|
27 |
+
type: text-classification
|
28 |
+
name: Amazon Review Classification
|
29 |
+
dataset:
|
30 |
+
type: flue-cls
|
31 |
+
name: FLUE-CLS
|
32 |
+
metrics:
|
33 |
+
- name: accuracy
|
34 |
+
type: accuracy
|
35 |
+
value: 0.95199
|
36 |
+
verified: false
|
37 |
+
---
|
38 |
+
|
39 |
+
# Model Card for almanach/camembertv2-base-cls
|
40 |
+
|
41 |
+
almanach/camembertv2-base-cls is a roberta model for text classification. It is trained on the FLUE-CLS dataset for the task of Amazon Review Classification. The model achieves an accuracy of 0.95199 on the FLUE-CLS dataset.
|
42 |
+
|
43 |
+
The model is part of the almanach/camembertv2-base family of model finetunes.
|
44 |
+
|
45 |
+
## Model Details
|
46 |
+
|
47 |
+
### Model Description
|
48 |
+
|
49 |
+
- **Developed by:** Wissam Antoun (Phd Student at Almanach, Inria-Paris)
|
50 |
+
- **Model type:** roberta
|
51 |
+
- **Language(s) (NLP):** French
|
52 |
+
- **License:** MIT
|
53 |
+
- **Finetuned from model [optional]:** almanach/camembertv2-base
|
54 |
+
|
55 |
+
### Model Sources [optional]
|
56 |
+
|
57 |
+
<!-- Provide the basic links for the model. -->
|
58 |
+
|
59 |
+
- **Repository:** https://github.com/WissamAntoun/camemberta
|
60 |
+
- **Paper:** https://arxiv.org/abs/2411.08868
|
61 |
+
|
62 |
+
## Uses
|
63 |
+
|
64 |
+
The model can be used for text classification tasks in French of Movie, Music, and Book reviews from Amazon.
|
65 |
+
|
66 |
+
## Bias, Risks, and Limitations
|
67 |
+
|
68 |
+
The model may exhibit biases based on the training data. The model may not generalize well to other datasets or tasks. The model may also have limitations in terms of the data it was trained on.
|
69 |
+
|
70 |
+
|
71 |
+
## How to Get Started with the Model
|
72 |
+
|
73 |
+
Use the code below to get started with the model.
|
74 |
+
|
75 |
+
```python
|
76 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
77 |
+
|
78 |
+
model = AutoModelForSequenceClassification.from_pretrained("almanach/camembertv2-base-cls")
|
79 |
+
tokenizer = AutoTokenizer.from_pretrained("almanach/camembertv2-base-cls")
|
80 |
+
|
81 |
+
classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
82 |
+
|
83 |
+
classifier("Le livre est très intéressant et j'ai appris beaucoup de choses.")
|
84 |
+
```
|
85 |
+
|
86 |
+
|
87 |
+
## Training Details
|
88 |
+
|
89 |
+
### Training Data
|
90 |
+
|
91 |
+
The model is trained on the FLUE-CLS dataset.
|
92 |
+
|
93 |
+
- Dataset Name: FLUE-CLS
|
94 |
+
- Dataset Size:
|
95 |
+
- Train: 5997
|
96 |
+
- Test: 5999
|
97 |
+
|
98 |
+
|
99 |
+
### Training Procedure
|
100 |
+
|
101 |
+
Model trained with the run_classification.py script from the huggingface repository.
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
#### Training Hyperparameters
|
106 |
+
|
107 |
+
```yml
|
108 |
+
accelerator_config: '{''split_batches'': False, ''dispatch_batches'': None, ''even_batches'':
|
109 |
+
True, ''use_seedable_sampler'': True, ''non_blocking'': False, ''gradient_accumulation_kwargs'':
|
110 |
+
None}'
|
111 |
+
adafactor: false
|
112 |
+
adam_beta1: 0.9
|
113 |
+
adam_beta2: 0.999
|
114 |
+
adam_epsilon: 1.0e-08
|
115 |
+
auto_find_batch_size: false
|
116 |
+
base_model: camembertv2
|
117 |
+
base_model_name: camembertv2-base-bf16-p2-17000
|
118 |
+
batch_eval_metrics: false
|
119 |
+
bf16: false
|
120 |
+
bf16_full_eval: false
|
121 |
+
data_seed: 1.0
|
122 |
+
dataloader_drop_last: false
|
123 |
+
dataloader_num_workers: 0
|
124 |
+
dataloader_persistent_workers: false
|
125 |
+
dataloader_pin_memory: true
|
126 |
+
dataloader_prefetch_factor: .nan
|
127 |
+
ddp_backend: .nan
|
128 |
+
ddp_broadcast_buffers: .nan
|
129 |
+
ddp_bucket_cap_mb: .nan
|
130 |
+
ddp_find_unused_parameters: .nan
|
131 |
+
ddp_timeout: 1800
|
132 |
+
debug: '[]'
|
133 |
+
deepspeed: .nan
|
134 |
+
disable_tqdm: false
|
135 |
+
dispatch_batches: .nan
|
136 |
+
do_eval: true
|
137 |
+
do_predict: false
|
138 |
+
do_train: true
|
139 |
+
epoch: 5.984
|
140 |
+
eval_accumulation_steps: 4
|
141 |
+
eval_accuracy: 0.9519919986664444
|
142 |
+
eval_delay: 0
|
143 |
+
eval_do_concat_batches: true
|
144 |
+
eval_loss: 0.2167392075061798
|
145 |
+
eval_on_start: false
|
146 |
+
eval_runtime: 52.247
|
147 |
+
eval_samples: 5999
|
148 |
+
eval_samples_per_second: 114.82
|
149 |
+
eval_steps: .nan
|
150 |
+
eval_steps_per_second: 14.355
|
151 |
+
eval_strategy: epoch
|
152 |
+
eval_use_gather_object: false
|
153 |
+
evaluation_strategy: epoch
|
154 |
+
fp16: false
|
155 |
+
fp16_backend: auto
|
156 |
+
fp16_full_eval: false
|
157 |
+
fp16_opt_level: O1
|
158 |
+
fsdp: '[]'
|
159 |
+
fsdp_config: '{''min_num_params'': 0, ''xla'': False, ''xla_fsdp_v2'': False, ''xla_fsdp_grad_ckpt'':
|
160 |
+
False}'
|
161 |
+
fsdp_min_num_params: 0
|
162 |
+
fsdp_transformer_layer_cls_to_wrap: .nan
|
163 |
+
full_determinism: false
|
164 |
+
gradient_accumulation_steps: 4
|
165 |
+
gradient_checkpointing: false
|
166 |
+
gradient_checkpointing_kwargs: .nan
|
167 |
+
greater_is_better: true
|
168 |
+
group_by_length: false
|
169 |
+
half_precision_backend: auto
|
170 |
+
hub_always_push: false
|
171 |
+
hub_model_id: .nan
|
172 |
+
hub_private_repo: false
|
173 |
+
hub_strategy: every_save
|
174 |
+
hub_token: <HUB_TOKEN>
|
175 |
+
ignore_data_skip: false
|
176 |
+
include_inputs_for_metrics: false
|
177 |
+
include_num_input_tokens_seen: false
|
178 |
+
include_tokens_per_second: false
|
179 |
+
jit_mode_eval: false
|
180 |
+
label_names: .nan
|
181 |
+
label_smoothing_factor: 0.0
|
182 |
+
learning_rate: 3.0e-05
|
183 |
+
length_column_name: length
|
184 |
+
load_best_model_at_end: true
|
185 |
+
local_rank: 0
|
186 |
+
log_level: debug
|
187 |
+
log_level_replica: warning
|
188 |
+
log_on_each_node: true
|
189 |
+
logging_dir: /scratch/camembertv2/runs/results/flue-CLS/camembertv2-base-bf16-p2-17000/max_seq_length-1024-gradient_accumulation_steps-4-precision-fp32-learning_rate-3e-05-epochs-6-lr_scheduler-cosine-warmup_steps-0/SEED-1/logs
|
190 |
+
logging_first_step: false
|
191 |
+
logging_nan_inf_filter: true
|
192 |
+
logging_steps: 100
|
193 |
+
logging_strategy: steps
|
194 |
+
lr_scheduler_kwargs: '{}'
|
195 |
+
lr_scheduler_type: cosine
|
196 |
+
max_grad_norm: 1.0
|
197 |
+
max_steps: -1
|
198 |
+
metric_for_best_model: accuracy
|
199 |
+
mp_parameters: .nan
|
200 |
+
name: camembertv2/runs/results/flue-CLS/camembertv2-base-bf16-p2-17000/max_seq_length-1024-gradient_accumulation_steps-4-precision-fp32-learning_rate-3e-05-epochs-6-lr_scheduler-cosine-warmup_steps-0
|
201 |
+
neftune_noise_alpha: .nan
|
202 |
+
no_cuda: false
|
203 |
+
num_train_epochs: 6.0
|
204 |
+
optim: adamw_torch
|
205 |
+
optim_args: .nan
|
206 |
+
optim_target_modules: .nan
|
207 |
+
output_dir: /scratch/camembertv2/runs/results/flue-CLS/camembertv2-base-bf16-p2-17000/max_seq_length-1024-gradient_accumulation_steps-4-precision-fp32-learning_rate-3e-05-epochs-6-lr_scheduler-cosine-warmup_steps-0/SEED-1
|
208 |
+
overwrite_output_dir: false
|
209 |
+
past_index: -1
|
210 |
+
per_device_eval_batch_size: 8
|
211 |
+
per_device_train_batch_size: 8
|
212 |
+
per_gpu_eval_batch_size: .nan
|
213 |
+
per_gpu_train_batch_size: .nan
|
214 |
+
prediction_loss_only: false
|
215 |
+
push_to_hub: false
|
216 |
+
push_to_hub_model_id: .nan
|
217 |
+
push_to_hub_organization: .nan
|
218 |
+
push_to_hub_token: <PUSH_TO_HUB_TOKEN>
|
219 |
+
ray_scope: last
|
220 |
+
remove_unused_columns: true
|
221 |
+
report_to: '[''tensorboard'']'
|
222 |
+
restore_callback_states_from_checkpoint: false
|
223 |
+
resume_from_checkpoint: .nan
|
224 |
+
run_name: /scratch/camembertv2/runs/results/flue-CLS/camembertv2-base-bf16-p2-17000/max_seq_length-1024-gradient_accumulation_steps-4-precision-fp32-learning_rate-3e-05-epochs-6-lr_scheduler-cosine-warmup_steps-0/SEED-1
|
225 |
+
save_on_each_node: false
|
226 |
+
save_only_model: false
|
227 |
+
save_safetensors: true
|
228 |
+
save_steps: 500
|
229 |
+
save_strategy: epoch
|
230 |
+
save_total_limit: .nan
|
231 |
+
seed: 1
|
232 |
+
skip_memory_metrics: true
|
233 |
+
split_batches: .nan
|
234 |
+
tf32: .nan
|
235 |
+
torch_compile: true
|
236 |
+
torch_compile_backend: inductor
|
237 |
+
torch_compile_mode: .nan
|
238 |
+
torch_empty_cache_steps: .nan
|
239 |
+
torchdynamo: .nan
|
240 |
+
total_flos: 6620464611065820.0
|
241 |
+
tpu_metrics_debug: false
|
242 |
+
tpu_num_cores: .nan
|
243 |
+
train_loss: 0.1198142634143591
|
244 |
+
train_runtime: 1269.2954
|
245 |
+
train_samples: 5997
|
246 |
+
train_samples_per_second: 28.348
|
247 |
+
train_steps_per_second: 0.884
|
248 |
+
use_cpu: false
|
249 |
+
use_ipex: false
|
250 |
+
use_legacy_prediction_loop: false
|
251 |
+
use_mps_device: false
|
252 |
+
warmup_ratio: 0.0
|
253 |
+
warmup_steps: 0
|
254 |
+
weight_decay: 0.0
|
255 |
+
|
256 |
+
```
|
257 |
+
|
258 |
+
#### Results
|
259 |
+
|
260 |
+
**Accuracy:** 0.95199
|
261 |
+
|
262 |
+
## Technical Specifications
|
263 |
+
|
264 |
+
### Model Architecture and Objective
|
265 |
+
|
266 |
+
roberta for sequence classification.
|
267 |
+
|
268 |
+
## Citation
|
269 |
+
|
270 |
+
**BibTeX:**
|
271 |
+
|
272 |
+
```bibtex
|
273 |
+
@misc{antoun2024camembert20smarterfrench,
|
274 |
+
title={CamemBERT 2.0: A Smarter French Language Model Aged to Perfection},
|
275 |
+
author={Wissam Antoun and Francis Kulumba and Rian Touchent and Éric de la Clergerie and Benoît Sagot and Djamé Seddah},
|
276 |
+
year={2024},
|
277 |
+
eprint={2411.08868},
|
278 |
+
archivePrefix={arXiv},
|
279 |
+
primaryClass={cs.CL},
|
280 |
+
url={https://arxiv.org/abs/2411.08868},
|
281 |
+
}
|
282 |
+
```
|
all_results.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 5.984,
|
3 |
+
"eval_accuracy": 0.9519919986664445,
|
4 |
+
"eval_loss": 0.2167392075061798,
|
5 |
+
"eval_runtime": 52.247,
|
6 |
+
"eval_samples": 5999,
|
7 |
+
"eval_samples_per_second": 114.82,
|
8 |
+
"eval_steps_per_second": 14.355,
|
9 |
+
"total_flos": 6620464611065820.0,
|
10 |
+
"train_loss": 0.11981426341435913,
|
11 |
+
"train_runtime": 1269.2954,
|
12 |
+
"train_samples": 5997,
|
13 |
+
"train_samples_per_second": 28.348,
|
14 |
+
"train_steps_per_second": 0.884
|
15 |
+
}
|
config.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/scratch/camembertv2/runs/models/camembertv2-base-bf16/post/ckpt-p2-17000/pt/",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"embedding_size": 768,
|
10 |
+
"eos_token_id": 2,
|
11 |
+
"finetuning_task": "cls",
|
12 |
+
"hidden_act": "gelu",
|
13 |
+
"hidden_dropout_prob": 0.1,
|
14 |
+
"hidden_size": 768,
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 3072,
|
17 |
+
"label2id": {
|
18 |
+
"negative": 0,
|
19 |
+
"positive": 1
|
20 |
+
},
|
21 |
+
"layer_norm_eps": 1e-07,
|
22 |
+
"max_position_embeddings": 1025,
|
23 |
+
"model_name": "camembertv2-base-bf16",
|
24 |
+
"model_type": "roberta",
|
25 |
+
"num_attention_heads": 12,
|
26 |
+
"num_hidden_layers": 12,
|
27 |
+
"pad_token_id": 0,
|
28 |
+
"position_biased_input": true,
|
29 |
+
"position_embedding_type": "absolute",
|
30 |
+
"problem_type": "single_label_classification",
|
31 |
+
"torch_dtype": "float32",
|
32 |
+
"transformers_version": "4.44.2",
|
33 |
+
"type_vocab_size": 1,
|
34 |
+
"use_cache": true,
|
35 |
+
"vocab_size": 32768
|
36 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 5.984,
|
3 |
+
"eval_accuracy": 0.9519919986664445,
|
4 |
+
"eval_loss": 0.2167392075061798,
|
5 |
+
"eval_runtime": 52.247,
|
6 |
+
"eval_samples": 5999,
|
7 |
+
"eval_samples_per_second": 114.82,
|
8 |
+
"eval_steps_per_second": 14.355
|
9 |
+
}
|
logs/events.out.tfevents.1724580883.nefgpu48.211636.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:65f5e505cb70d22a3c982438ca726edb5a615b928820733e9f493d37a0c40957
|
3 |
+
size 10296
|
logs/events.out.tfevents.1724582205.nefgpu48.211636.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f7a4823ddf52a4c41a315de4ad85d788e7191716e840409a0d435ac02fbd20e
|
3 |
+
size 363
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c572a3ac898deb922c61283e8dc8413437a9b21750bf90845e638859823b176
|
3 |
+
size 446431832
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "[CLS]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "[SEP]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "[MASK]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "[SEP]",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": true,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "[PAD]",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "[CLS]",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "[SEP]",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "[UNK]",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"4": {
|
37 |
+
"content": "[MASK]",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
}
|
44 |
+
},
|
45 |
+
"bos_token": "[CLS]",
|
46 |
+
"clean_up_tokenization_spaces": true,
|
47 |
+
"cls_token": "[CLS]",
|
48 |
+
"eos_token": "[SEP]",
|
49 |
+
"errors": "replace",
|
50 |
+
"mask_token": "[MASK]",
|
51 |
+
"model_max_length": 1000000000000000019884624838656,
|
52 |
+
"pad_token": "[PAD]",
|
53 |
+
"sep_token": "[SEP]",
|
54 |
+
"tokenizer_class": "RobertaTokenizer",
|
55 |
+
"trim_offsets": true,
|
56 |
+
"unk_token": "[UNK]"
|
57 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 5.984,
|
3 |
+
"total_flos": 6620464611065820.0,
|
4 |
+
"train_loss": 0.11981426341435913,
|
5 |
+
"train_runtime": 1269.2954,
|
6 |
+
"train_samples": 5997,
|
7 |
+
"train_samples_per_second": 28.348,
|
8 |
+
"train_steps_per_second": 0.884
|
9 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.9519919986664445,
|
3 |
+
"best_model_checkpoint": "/scratch/camembertv2/runs/results/flue-CLS/camembertv2-base-bf16-p2-17000/max_seq_length-1024-gradient_accumulation_steps-4-precision-fp32-learning_rate-3e-05-epochs-6-lr_scheduler-cosine-warmup_steps-0/SEED-1/checkpoint-1122",
|
4 |
+
"epoch": 5.984,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 1122,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.5333333333333333,
|
13 |
+
"grad_norm": 5.213508605957031,
|
14 |
+
"learning_rate": 2.9415834288858954e-05,
|
15 |
+
"loss": 0.3587,
|
16 |
+
"step": 100
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.9973333333333333,
|
20 |
+
"eval_accuracy": 0.9234872478746458,
|
21 |
+
"eval_loss": 0.21121856570243835,
|
22 |
+
"eval_runtime": 52.6425,
|
23 |
+
"eval_samples_per_second": 113.957,
|
24 |
+
"eval_steps_per_second": 14.247,
|
25 |
+
"step": 187
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"epoch": 1.0666666666666667,
|
29 |
+
"grad_norm": 7.258457183837891,
|
30 |
+
"learning_rate": 2.7708837099178863e-05,
|
31 |
+
"loss": 0.2208,
|
32 |
+
"step": 200
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 1.6,
|
36 |
+
"grad_norm": 19.751707077026367,
|
37 |
+
"learning_rate": 2.5011964327923105e-05,
|
38 |
+
"loss": 0.164,
|
39 |
+
"step": 300
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 2.0,
|
43 |
+
"eval_accuracy": 0.9384897482913819,
|
44 |
+
"eval_loss": 0.1945669800043106,
|
45 |
+
"eval_runtime": 52.3758,
|
46 |
+
"eval_samples_per_second": 114.538,
|
47 |
+
"eval_steps_per_second": 14.32,
|
48 |
+
"step": 375
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"epoch": 2.1333333333333333,
|
52 |
+
"grad_norm": 8.5791015625,
|
53 |
+
"learning_rate": 2.1535272055128672e-05,
|
54 |
+
"loss": 0.1581,
|
55 |
+
"step": 400
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"epoch": 2.6666666666666665,
|
59 |
+
"grad_norm": 5.534102916717529,
|
60 |
+
"learning_rate": 1.754955553598965e-05,
|
61 |
+
"loss": 0.0974,
|
62 |
+
"step": 500
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 2.997333333333333,
|
66 |
+
"eval_accuracy": 0.9489914985830972,
|
67 |
+
"eval_loss": 0.20593389868736267,
|
68 |
+
"eval_runtime": 52.314,
|
69 |
+
"eval_samples_per_second": 114.673,
|
70 |
+
"eval_steps_per_second": 14.337,
|
71 |
+
"step": 562
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"epoch": 3.2,
|
75 |
+
"grad_norm": 0.21238231658935547,
|
76 |
+
"learning_rate": 1.3365257293813959e-05,
|
77 |
+
"loss": 0.0864,
|
78 |
+
"step": 600
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"epoch": 3.7333333333333334,
|
82 |
+
"grad_norm": 0.7444894313812256,
|
83 |
+
"learning_rate": 9.308287136370512e-06,
|
84 |
+
"loss": 0.0728,
|
85 |
+
"step": 700
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"epoch": 4.0,
|
89 |
+
"eval_accuracy": 0.9511585264210701,
|
90 |
+
"eval_loss": 0.19625167548656464,
|
91 |
+
"eval_runtime": 52.4884,
|
92 |
+
"eval_samples_per_second": 114.292,
|
93 |
+
"eval_steps_per_second": 14.289,
|
94 |
+
"step": 750
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 4.266666666666667,
|
98 |
+
"grad_norm": 11.124679565429688,
|
99 |
+
"learning_rate": 5.694637444606099e-06,
|
100 |
+
"loss": 0.0612,
|
101 |
+
"step": 800
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 4.8,
|
105 |
+
"grad_norm": 6.557811260223389,
|
106 |
+
"learning_rate": 2.805770917454614e-06,
|
107 |
+
"loss": 0.0353,
|
108 |
+
"step": 900
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 4.997333333333334,
|
112 |
+
"eval_accuracy": 0.9516586097682947,
|
113 |
+
"eval_loss": 0.2168048769235611,
|
114 |
+
"eval_runtime": 52.2955,
|
115 |
+
"eval_samples_per_second": 114.713,
|
116 |
+
"eval_steps_per_second": 14.342,
|
117 |
+
"step": 937
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 5.333333333333333,
|
121 |
+
"grad_norm": 2.557724952697754,
|
122 |
+
"learning_rate": 8.66697790812731e-07,
|
123 |
+
"loss": 0.0445,
|
124 |
+
"step": 1000
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"epoch": 5.866666666666667,
|
128 |
+
"grad_norm": 0.06581971794366837,
|
129 |
+
"learning_rate": 2.8450068944338436e-08,
|
130 |
+
"loss": 0.035,
|
131 |
+
"step": 1100
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"epoch": 5.984,
|
135 |
+
"eval_accuracy": 0.9519919986664445,
|
136 |
+
"eval_loss": 0.2167392075061798,
|
137 |
+
"eval_runtime": 52.341,
|
138 |
+
"eval_samples_per_second": 114.614,
|
139 |
+
"eval_steps_per_second": 14.329,
|
140 |
+
"step": 1122
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 5.984,
|
144 |
+
"step": 1122,
|
145 |
+
"total_flos": 6620464611065820.0,
|
146 |
+
"train_loss": 0.11981426341435913,
|
147 |
+
"train_runtime": 1269.2954,
|
148 |
+
"train_samples_per_second": 28.348,
|
149 |
+
"train_steps_per_second": 0.884
|
150 |
+
}
|
151 |
+
],
|
152 |
+
"logging_steps": 100,
|
153 |
+
"max_steps": 1122,
|
154 |
+
"num_input_tokens_seen": 0,
|
155 |
+
"num_train_epochs": 6,
|
156 |
+
"save_steps": 500,
|
157 |
+
"stateful_callbacks": {
|
158 |
+
"TrainerControl": {
|
159 |
+
"args": {
|
160 |
+
"should_epoch_stop": false,
|
161 |
+
"should_evaluate": false,
|
162 |
+
"should_log": false,
|
163 |
+
"should_save": true,
|
164 |
+
"should_training_stop": true
|
165 |
+
},
|
166 |
+
"attributes": {}
|
167 |
+
}
|
168 |
+
},
|
169 |
+
"total_flos": 6620464611065820.0,
|
170 |
+
"train_batch_size": 8,
|
171 |
+
"trial_name": null,
|
172 |
+
"trial_params": null
|
173 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a3c9e041e9a849d386f95f099757f5432f20f270c5c148a30bc5aab790564b1
|
3 |
+
size 5560
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|