alperugurcan
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
# Load your model
|
7 |
+
model = tf.keras.models.load_model("ElYazisiRakamlariTahmin.h5")
|
8 |
+
|
9 |
+
def preprocess_image(image):
|
10 |
+
# Implement your image preprocessing here
|
11 |
+
# This is just a placeholder example
|
12 |
+
image = image.convert("L") # Convert to grayscale
|
13 |
+
image = image.resize((28, 28)) # Resize to match your model's input size
|
14 |
+
image = np.array(image) / 255.0 # Normalize
|
15 |
+
return image.reshape(1, 28, 28, 1) # Reshape for model input
|
16 |
+
|
17 |
+
def predict_digit(image):
|
18 |
+
preprocessed = preprocess_image(image)
|
19 |
+
prediction = model.predict(preprocessed)
|
20 |
+
digit = np.argmax(prediction)
|
21 |
+
confidence = np.max(prediction)
|
22 |
+
return f"Predicted Digit: {digit}, Confidence: {confidence:.2f}"
|
23 |
+
|
24 |
+
iface = gr.Interface(
|
25 |
+
fn=predict_digit,
|
26 |
+
inputs=gr.Image(type="pil"),
|
27 |
+
outputs="text",
|
28 |
+
title="Handwritten Digit Recognition",
|
29 |
+
description="Upload an image of a handwritten digit (0-9) to get a prediction."
|
30 |
+
)
|
31 |
+
|
32 |
+
iface.launch()
|