alpindale commited on
Commit
06682cc
·
verified ·
1 Parent(s): 3bbb2c8

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ gemma-7b.gguf filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,443 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ extra_gated_heading: "Access Gemma on Hugging Face"
5
+ extra_gated_prompt: "To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged-in to Hugging Face and click below. Requests are processed immediately."
6
+ extra_gated_button_content: "Acknowledge license"
7
+ ---
8
+
9
+ # Gemma Model Card
10
+
11
+ **Model Page**: [Gemma](https://ai.google.dev/gemma/docs)
12
+
13
+ This model card corresponds to the 7B base version of the Gemma model. You can also visit the model card of the [2B base model](https://huggingface.co/google/gemma-2b), [7B instruct model](https://huggingface.co/google/gemma-7b-it), and [2B instruct model](https://huggingface.co/google/gemma-2b-it).
14
+
15
+ **Resources and Technical Documentation**:
16
+
17
+ * [Responsible Generative AI Toolkit](https://ai.google.dev/responsible)
18
+ * [Gemma on Kaggle](https://www.kaggle.com/models/google/gemma)
19
+ * [Gemma on Vertex Model Garden](https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/335)
20
+
21
+ **Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent)
22
+
23
+ **Authors**: Google
24
+
25
+ ## Model Information
26
+
27
+ Summary description and brief definition of inputs and outputs.
28
+
29
+ ### Description
30
+
31
+ Gemma is a family of lightweight, state-of-the-art open models from Google,
32
+ built from the same research and technology used to create the Gemini models.
33
+ They are text-to-text, decoder-only large language models, available in English,
34
+ with open weights, pre-trained variants, and instruction-tuned variants. Gemma
35
+ models are well-suited for a variety of text generation tasks, including
36
+ question answering, summarization, and reasoning. Their relatively small size
37
+ makes it possible to deploy them in environments with limited resources such as
38
+ a laptop, desktop or your own cloud infrastructure, democratizing access to
39
+ state of the art AI models and helping foster innovation for everyone.
40
+
41
+ ### Usage
42
+
43
+ Below we share some code snippets on how to get quickly started with running the model. First make sure to `pip install -U transformers`, then copy the snippet from the section that is relevant for your usecase.
44
+
45
+ #### Fine-tuning examples
46
+
47
+ You can find fine-tuning notebooks under the [`examples/` directory](https://huggingface.co/google/gemma-7b/tree/main/examples). We provide:
48
+
49
+ * A script to perform Supervised Fine-Tuning (SFT) on UltraChat dataset using [QLoRA](https://huggingface.co/papers/2305.14314)
50
+ * A script to perform SFT using FSDP on TPU devices
51
+ * A notebook that you can run on a free-tier Google Colab instance to perform SFT on English quotes dataset
52
+
53
+ #### Running the model on a CPU
54
+
55
+
56
+ ```python
57
+ from transformers import AutoTokenizer, AutoModelForCausalLM
58
+
59
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
60
+ model = AutoModelForCausalLM.from_pretrained("google/gemma-7b")
61
+
62
+ input_text = "Write me a poem about Machine Learning."
63
+ input_ids = tokenizer(**input_text, return_tensors="pt")
64
+
65
+ outputs = model.generate(input_ids)
66
+ print(tokenizer.decode(outputs[0]))
67
+ ```
68
+
69
+
70
+ #### Running the model on a single / multi GPU
71
+
72
+
73
+ ```python
74
+ # pip install accelerate
75
+ from transformers import AutoTokenizer, AutoModelForCausalLM
76
+
77
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
78
+ model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", device_map="auto")
79
+
80
+ input_text = "Write me a poem about Machine Learning."
81
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
82
+
83
+ outputs = model.generate(**input_ids)
84
+ print(tokenizer.decode(outputs[0]))
85
+ ```
86
+
87
+
88
+ #### Running the model on a GPU using different precisions
89
+
90
+ * _Using `torch.float16`_
91
+
92
+ ```python
93
+ # pip install accelerate
94
+ from transformers import AutoTokenizer, AutoModelForCausalLM
95
+
96
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
97
+ model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", device_map="auto", torch_dtype=torch.float16)
98
+
99
+ input_text = "Write me a poem about Machine Learning."
100
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
101
+
102
+ outputs = model.generate(**input_ids)
103
+ print(tokenizer.decode(outputs[0]))
104
+ ```
105
+
106
+ * _Using `torch.bfloat16`_
107
+
108
+ ```python
109
+ # pip install accelerate
110
+ from transformers import AutoTokenizer, AutoModelForCausalLM
111
+
112
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
113
+ model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", device_map="auto", torch_dtype=torch.bfloat16)
114
+
115
+ input_text = "Write me a poem about Machine Learning."
116
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
117
+
118
+ outputs = model.generate(**input_ids)
119
+ print(tokenizer.decode(outputs[0]))
120
+ ```
121
+
122
+ #### Quantized Versions through `bitsandbytes`
123
+
124
+ * _Using 8-bit precision (int8)_
125
+
126
+ ```python
127
+ # pip install bitsandbytes accelerate
128
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
129
+
130
+ quantization_config = BitsAndBytesConfig(load_in_8bit=True)
131
+
132
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
133
+ model = AutoModelForCausalLM.from_pretrained(google/gemma-7b", quantization_config=quantization_config)
134
+
135
+ input_text = "Write me a poem about Machine Learning."
136
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
137
+
138
+ outputs = model.generate(**input_ids)
139
+ print(tokenizer.decode(outputs[0]))
140
+ ```
141
+
142
+ * _Using 4-bit precision_
143
+
144
+ ```python
145
+ # pip install bitsandbytes accelerate
146
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
147
+
148
+ quantization_config = BitsAndBytesConfig(load_in_4bit=True)
149
+
150
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
151
+ model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", quantization_config=quantization_config)
152
+
153
+ input_text = "Write me a poem about Machine Learning."
154
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
155
+
156
+ outputs = model.generate(**input_ids)
157
+ print(tokenizer.decode(outputs[0]))
158
+ ```
159
+
160
+
161
+ #### Other optimizations
162
+
163
+ * _Flash Attention 2_
164
+
165
+ First make sure to install `flash-attn` in your environment `pip install flash-attn`
166
+
167
+ ```diff
168
+ model = AutoModelForCausalLM.from_pretrained(
169
+ model_id,
170
+ torch_dtype=torch.float16,
171
+ + attn_implementation="flash_attention_2"
172
+ ).to(0)
173
+ ```
174
+
175
+ ### Inputs and outputs
176
+
177
+ * **Input:** Text string, such as a question, a prompt, or a document to be
178
+ summarized.
179
+ * **Output:** Generated English-language text in response to the input, such
180
+ as an answer to a question, or a summary of a document.
181
+
182
+ ## Model Data
183
+
184
+ Data used for model training and how the data was processed.
185
+
186
+ ### Training Dataset
187
+
188
+ These models were trained on a dataset of text data that includes a wide variety
189
+ of sources, totaling 6 trillion tokens. Here are the key components:
190
+
191
+ * Web Documents: A diverse collection of web text ensures the model is exposed
192
+ to a broad range of linguistic styles, topics, and vocabulary. Primarily
193
+ English-language content.
194
+ * Code: Exposing the model to code helps it to learn the syntax and patterns of
195
+ programming languages, which improves its ability to generate code or
196
+ understand code-related questions.
197
+ * Mathematics: Training on mathematical text helps the model learn logical
198
+ reasoning, symbolic representation, and to address mathematical queries.
199
+
200
+ The combination of these diverse data sources is crucial for training a powerful
201
+ language model that can handle a wide variety of different tasks and text
202
+ formats.
203
+
204
+ ### Data Preprocessing
205
+
206
+ Here are the key data cleaning and filtering methods applied to the training
207
+ data:
208
+
209
+ * CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was
210
+ applied at multiple stages in the data preparation process to ensure the
211
+ exclusion of harmful and illegal content
212
+ * Sensitive Data Filtering: As part of making Gemma pre-trained models safe and
213
+ reliable, automated techniques were used to filter out certain personal
214
+ information and other sensitive data from training sets.
215
+ * Additional methods: Filtering based on content quality and safely in line with
216
+ [our policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11).
217
+
218
+ ## Implementation Information
219
+
220
+ Details about the model internals.
221
+
222
+ ### Hardware
223
+
224
+ Gemma was trained using the latest generation of
225
+ [Tensor Processing Unit (TPU)](https://cloud.google.com/tpu/docs/intro-to-tpu) hardware (TPUv5e).
226
+
227
+ Training large language models requires significant computational power. TPUs,
228
+ designed specifically for matrix operations common in machine learning, offer
229
+ several advantages in this domain:
230
+
231
+ * Performance: TPUs are specifically designed to handle the massive computations
232
+ involved in training LLMs. They can speed up training considerably compared to
233
+ CPUs.
234
+ * Memory: TPUs often come with large amounts of high-bandwidth memory, allowing
235
+ for the handling of large models and batch sizes during training. This can
236
+ lead to better model quality.
237
+ * Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for
238
+ handling the growing complexity of large foundation models. You can distribute
239
+ training across multiple TPU devices for faster and more efficient processing.
240
+ * Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective
241
+ solution for training large models compared to CPU-based infrastructure,
242
+ especially when considering the time and resources saved due to faster
243
+ training.
244
+ * These advantages are aligned with
245
+ [Google's commitments to operate sustainably](https://sustainability.google/operating-sustainably/).
246
+
247
+ ### Software
248
+
249
+ Training was done using [JAX](https://github.com/google/jax) and [ML Pathways](https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/ml-pathways).
250
+
251
+ JAX allows researchers to take advantage of the latest generation of hardware,
252
+ including TPUs, for faster and more efficient training of large models.
253
+
254
+ ML Pathways is Google's latest effort to build artificially intelligent systems
255
+ capable of generalizing across multiple tasks. This is specially suitable for
256
+ [foundation models](https://ai.google/discover/foundation-models/), including large language models like
257
+ these ones.
258
+
259
+ Together, JAX and ML Pathways are used as described in the
260
+ [paper about the Gemini family of models](https://arxiv.org/abs/2312.11805); "the 'single
261
+ controller' programming model of Jax and Pathways allows a single Python
262
+ process to orchestrate the entire training run, dramatically simplifying the
263
+ development workflow."
264
+
265
+ ## Evaluation
266
+
267
+ Model evaluation metrics and results.
268
+
269
+ ### Benchmark Results
270
+
271
+ These models were evaluated against a large collection of different datasets and
272
+ metrics to cover different aspects of text generation:
273
+
274
+ | Benchmark | Metric | 2B Params | 7B Params |
275
+ | ------------------------------ | ------------- | ----------- | --------- |
276
+ | [MMLU](https://arxiv.org/abs/2009.03300) | 5-shot, top-1 | 42.3 | 64.3 |
277
+ | [HellaSwag](https://arxiv.org/abs/1905.07830) | 0-shot |71.4 | 81.2 |
278
+ | [PIQA](https://arxiv.org/abs/1911.11641) | 0-shot | 77.3 | 81.2 |
279
+ | [SocialIQA](https://arxiv.org/abs/1904.09728) | 0-shot | 59.7 | 51.8 |
280
+ | [BooIQ](https://arxiv.org/abs/1905.10044) | 0-shot | 69.4 | 83.2 |
281
+ | [WinoGrande](https://arxiv.org/abs/1907.10641) | partial score | 65.4 | 72.3 |
282
+ | [CommonsenseQA](https://arxiv.org/abs/1811.00937) | 7-shot | 65.3 | 71.3 |
283
+ | [OpenBookQA](https://arxiv.org/abs/1809.02789) | | 47.8 | 52.8 |
284
+ | [ARC-e](https://arxiv.org/abs/1911.01547) | | 73.2 | 81.5 |
285
+ | [ARC-c](https://arxiv.org/abs/1911.01547) | | 42.1 | 53.2 |
286
+ | [TriviaQA](https://arxiv.org/abs/1705.03551) | 5-shot | 53.2 | 63.4 |
287
+ | [Natural Questions](https://github.com/google-research-datasets/natural-questions) | 5-shot | - | 23 |
288
+ | [HumanEval](https://arxiv.org/abs/2107.03374) | pass@1 | 22.0 | 32.3 |
289
+ | [MBPP](https://arxiv.org/abs/2108.07732) | 3-shot | 29.2 | 44.4 |
290
+ | [GSM8K](https://arxiv.org/abs/2110.14168) | maj@1 | 17.7 | 46.4 |
291
+ | [MATH](https://arxiv.org/abs/2108.07732) | 4-shot | 11.8 | 24.3 |
292
+ | [AGIEval](https://arxiv.org/abs/2304.06364) | | 24.2 | 41.7 |
293
+ | [BIG-Bench](https://arxiv.org/abs/2206.04615) | | 35.2 | 55.1 |
294
+ | ------------------------------ | ------------- | ----------- | --------- |
295
+ | **Average** | | **54.0** | **56.4** |
296
+
297
+ ## Ethics and Safety
298
+
299
+ Ethics and safety evaluation approach and results.
300
+
301
+ ### Evaluation Approach
302
+
303
+ Our evaluation methods include structured evaluations and internal red-teaming
304
+ testing of relevant content policies. Red-teaming was conducted by a number of
305
+ different teams, each with different goals and human evaluation metrics. These
306
+ models were evaluated against a number of different categories relevant to
307
+ ethics and safety, including:
308
+
309
+ * Text-to-Text Content Safety: Human evaluation on prompts covering safety
310
+ policies including child sexual abuse and exploitation, harassment, violence
311
+ and gore, and hate speech.
312
+ * Text-to-Text Representational Harms: Benchmark against relevant academic
313
+ datasets such as [WinoBias](https://arxiv.org/abs/1804.06876) and [BBQ Dataset](https://arxiv.org/abs/2110.08193v2).
314
+ * Memorization: Automated evaluation of memorization of training data, including
315
+ the risk of personally identifiable information exposure.
316
+ * Large-scale harm: Tests for "dangerous capabilities," such as chemical,
317
+ biological, radiological, and nuclear (CBRN) risks.
318
+
319
+ ### Evaluation Results
320
+
321
+ The results of ethics and safety evaluations are within acceptable thresholds
322
+ for meeting [internal policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11) for categories such as child
323
+ safety, content safety, representational harms, memorization, large-scale harms.
324
+ On top of robust internal evaluations, the results of well known safety
325
+ benchmarks like BBQ, BOLD, Winogender, Winobias, RealToxicity, and TruthfulQA
326
+ are shown here.
327
+
328
+ | Benchmark | Metric | 2B Params | 7B Params |
329
+ | ------------------------------ | ------------- | ----------- | --------- |
330
+ | [RealToxicity](https://arxiv.org/abs/2009.11462) | average | 6.86 | 7.90 |
331
+ | [BOLD](https://arxiv.org/abs/2101.11718) | | 45.57 | 49.08 |
332
+ | [CrowS-Pairs](https://aclanthology.org/2020.emnlp-main.154/) | top-1 | 45.82 | 51.33 |
333
+ | [BBQ Ambig](https://arxiv.org/abs/2110.08193v2) | 1-shot, top-1 | 62.58 | 92.54 |
334
+ | [BBQ Disambig](https://arxiv.org/abs/2110.08193v2) | top-1 | 54.62 | 71.99 |
335
+ | [Winogender](https://arxiv.org/abs/1804.09301) | top-1 | 51.25 | 54.17 |
336
+ | [TruthfulQA](https://arxiv.org/abs/2109.07958) | | 44.84 | 31.81 |
337
+ | [Winobias 1_2](https://arxiv.org/abs/1804.06876) | | 56.12 | 59.09 |
338
+ | [Winobias 2_2](https://arxiv.org/abs/1804.06876) | | 91.10 | 92.23 |
339
+ | [Toxigen](https://arxiv.org/abs/2203.09509) | | 29.77 | 39.59 |
340
+ | ------------------------------ | ------------- | ----------- | --------- |
341
+
342
+
343
+ ## Usage and Limitations
344
+
345
+ These models have certain limitations that users should be aware of.
346
+
347
+ ### Intended Usage
348
+
349
+ Open Large Language Models (LLMs) have a wide range of applications across
350
+ various industries and domains. The following list of potential uses is not
351
+ comprehensive. The purpose of this list is to provide contextual information
352
+ about the possible use-cases that the model creators considered as part of model
353
+ training and development.
354
+
355
+ * Content Creation and Communication
356
+ * Text Generation: These models can be used to generate creative text formats
357
+ such as poems, scripts, code, marketing copy, and email drafts.
358
+ * Chatbots and Conversational AI: Power conversational interfaces for customer
359
+ service, virtual assistants, or interactive applications.
360
+ * Text Summarization: Generate concise summaries of a text corpus, research
361
+ papers, or reports.
362
+ * Research and Education
363
+ * Natural Language Processing (NLP) Research: These models can serve as a
364
+ foundation for researchers to experiment with NLP techniques, develop
365
+ algorithms, and contribute to the advancement of the field.
366
+ * Language Learning Tools: Support interactive language learning experiences,
367
+ aiding in grammar correction or providing writing practice.
368
+ * Knowledge Exploration: Assist researchers in exploring large bodies of text
369
+ by generating summaries or answering questions about specific topics.
370
+
371
+ ### Limitations
372
+
373
+ * Training Data
374
+ * The quality and diversity of the training data significantly influence the
375
+ model's capabilities. Biases or gaps in the training data can lead to
376
+ limitations in the model's responses.
377
+ * The scope of the training dataset determines the subject areas the model can
378
+ handle effectively.
379
+ * Context and Task Complexity
380
+ * LLMs are better at tasks that can be framed with clear prompts and
381
+ instructions. Open-ended or highly complex tasks might be challenging.
382
+ * A model's performance can be influenced by the amount of context provided
383
+ (longer context generally leads to better outputs, up to a certain point).
384
+ * Language Ambiguity and Nuance
385
+ * Natural language is inherently complex. LLMs might struggle to grasp subtle
386
+ nuances, sarcasm, or figurative language.
387
+ * Factual Accuracy
388
+ * LLMs generate responses based on information they learned from their
389
+ training datasets, but they are not knowledge bases. They may generate
390
+ incorrect or outdated factual statements.
391
+ * Common Sense
392
+ * LLMs rely on statistical patterns in language. They might lack the ability
393
+ to apply common sense reasoning in certain situations.
394
+
395
+ ### Ethical Considerations and Risks
396
+
397
+ The development of large language models (LLMs) raises several ethical concerns.
398
+ In creating an open model, we have carefully considered the following:
399
+
400
+ * Bias and Fairness
401
+ * LLMs trained on large-scale, real-world text data can reflect socio-cultural
402
+ biases embedded in the training material. These models underwent careful
403
+ scrutiny, input data pre-processing described and posterior evaluations
404
+ reported in this card.
405
+ * Misinformation and Misuse
406
+ * LLMs can be misused to generate text that is false, misleading, or harmful.
407
+ * Guidelines are provided for responsible use with the model, see the
408
+ [Responsible Generative AI Toolkit](http://ai.google.dev/gemma/responsible).
409
+ * Transparency and Accountability:
410
+ * This model card summarizes details on the models' architecture,
411
+ capabilities, limitations, and evaluation processes.
412
+ * A responsibly developed open model offers the opportunity to share
413
+ innovation by making LLM technology accessible to developers and researchers
414
+ across the AI ecosystem.
415
+
416
+ Risks identified and mitigations:
417
+
418
+ * Perpetuation of biases: It's encouraged to perform continuous monitoring
419
+ (using evaluation metrics, human review) and the exploration of de-biasing
420
+ techniques during model training, fine-tuning, and other use cases.
421
+ * Generation of harmful content: Mechanisms and guidelines for content safety
422
+ are essential. Developers are encouraged to exercise caution and implement
423
+ appropriate content safety safeguards based on their specific product policies
424
+ and application use cases.
425
+ * Misuse for malicious purposes: Technical limitations and developer and
426
+ end-user education can help mitigate against malicious applications of LLMs.
427
+ Educational resources and reporting mechanisms for users to flag misuse are
428
+ provided. Prohibited uses of Gemma models are outlined in the
429
+ [Gemma Prohibited Use Policy](https://ai.google.dev/gemma/prohibited_use_policy).
430
+ * Privacy violations: Models were trained on data filtered for removal of PII
431
+ (Personally Identifiable Information). Developers are encouraged to adhere to
432
+ privacy regulations with privacy-preserving techniques.
433
+
434
+ ### Benefits
435
+
436
+ At the time of release, this family of models provides high-performance open
437
+ large language model implementations designed from the ground up for Responsible
438
+ AI development compared to similarly sized models.
439
+
440
+ Using the benchmark evaluation metrics described in this document, these models
441
+ have shown to provide superior performance to other, comparably-sized open model
442
+ alternatives.
443
+
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "GemmaForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 2,
8
+ "eos_token_id": 1,
9
+ "head_dim": 256,
10
+ "hidden_act": "gelu",
11
+ "hidden_size": 3072,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 24576,
14
+ "max_position_embeddings": 8192,
15
+ "model_type": "gemma",
16
+ "num_attention_heads": 16,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 16,
19
+ "pad_token_id": 0,
20
+ "rms_norm_eps": 1e-06,
21
+ "rope_scaling": null,
22
+ "rope_theta": 10000.0,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.38.0.dev0",
25
+ "use_cache": true,
26
+ "vocab_size": 256000
27
+ }
examples/example_fsdp.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Make sure to run the script with the following envs:
2
+ # PJRT_DEVICE=TPU XLA_USE_SPMD=1
3
+
4
+ import torch
5
+ import torch_xla
6
+
7
+ import torch_xla.core.xla_model as xm
8
+
9
+ from datasets import load_dataset
10
+ from peft import LoraConfig, get_peft_model
11
+ from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments
12
+ from trl import SFTTrainer
13
+
14
+ # Set up TPU device.
15
+ device = xm.xla_device()
16
+ model_id = "google/gemma-7b"
17
+
18
+ # Load the pretrained model and tokenizer.
19
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
20
+ model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16)
21
+
22
+ # Set up PEFT LoRA for fine-tuning.
23
+ lora_config = LoraConfig(
24
+ r=8,
25
+ target_modules=["k_proj", "v_proj"],
26
+ task_type="CAUSAL_LM",
27
+ )
28
+
29
+ # Load the dataset and format it for training.
30
+ data = load_dataset("Abirate/english_quotes", split="train")
31
+ max_seq_length = 1024
32
+
33
+ # Set up the FSDP config. To enable FSDP via SPMD, set xla_fsdp_v2 to True.
34
+ fsdp_config = {"fsdp_transformer_layer_cls_to_wrap": [
35
+ "GemmaDecoderLayer"
36
+ ],
37
+ "xla": True,
38
+ "xla_fsdp_v2": True,
39
+ "xla_fsdp_grad_ckpt": True}
40
+
41
+ # Finally, set up the trainer and train the model.
42
+ trainer = SFTTrainer(
43
+ model=model,
44
+ train_dataset=data,
45
+ args=TrainingArguments(
46
+ per_device_train_batch_size=64, # This is actually the global batch size for SPMD.
47
+ num_train_epochs=100,
48
+ max_steps=-1,
49
+ output_dir="./output",
50
+ optim="adafactor",
51
+ logging_steps=1,
52
+ dataloader_drop_last = True, # Required for SPMD.
53
+ fsdp="full_shard",
54
+ fsdp_config=fsdp_config,
55
+ ),
56
+ peft_config=lora_config,
57
+ dataset_text_field="quote",
58
+ max_seq_length=max_seq_length,
59
+ packing=True,
60
+ )
61
+
62
+ trainer.train()
examples/example_sft_qlora.py ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass, field
2
+ from typing import Optional
3
+
4
+ import torch
5
+
6
+ from transformers import AutoTokenizer, HfArgumentParser, AutoModelForCausalLM, BitsAndBytesConfig, TrainingArguments
7
+ from datasets import load_dataset
8
+ from peft import LoraConfig
9
+ from trl import SFTTrainer
10
+
11
+ @dataclass
12
+ class ScriptArguments:
13
+ """
14
+ These arguments vary depending on how many GPUs you have, what their capacity and features are, and what size model you want to train.
15
+ """
16
+ per_device_train_batch_size: Optional[int] = field(default=4)
17
+ per_device_eval_batch_size: Optional[int] = field(default=1)
18
+ gradient_accumulation_steps: Optional[int] = field(default=4)
19
+ learning_rate: Optional[float] = field(default=2e-4)
20
+ max_grad_norm: Optional[float] = field(default=0.3)
21
+ weight_decay: Optional[int] = field(default=0.001)
22
+ lora_alpha: Optional[int] = field(default=16)
23
+ lora_dropout: Optional[float] = field(default=0.1)
24
+ lora_r: Optional[int] = field(default=8)
25
+ max_seq_length: Optional[int] = field(default=2048)
26
+ model_name: Optional[str] = field(
27
+ default=None,
28
+ metadata={
29
+ "help": "The model that you want to train from the Hugging Face hub. E.g. gpt2, gpt2-xl, bert, etc."
30
+ }
31
+ )
32
+ dataset_name: Optional[str] = field(
33
+ default="stingning/ultrachat",
34
+ metadata={"help": "The preference dataset to use."},
35
+ )
36
+ fp16: Optional[bool] = field(
37
+ default=False,
38
+ metadata={"help": "Enables fp16 training."},
39
+ )
40
+ bf16: Optional[bool] = field(
41
+ default=False,
42
+ metadata={"help": "Enables bf16 training."},
43
+ )
44
+ packing: Optional[bool] = field(
45
+ default=True,
46
+ metadata={"help": "Use packing dataset creating."},
47
+ )
48
+ gradient_checkpointing: Optional[bool] = field(
49
+ default=True,
50
+ metadata={"help": "Enables gradient checkpointing."},
51
+ )
52
+ use_flash_attention_2: Optional[bool] = field(
53
+ default=False,
54
+ metadata={"help": "Enables Flash Attention 2."},
55
+ )
56
+ optim: Optional[str] = field(
57
+ default="paged_adamw_32bit",
58
+ metadata={"help": "The optimizer to use."},
59
+ )
60
+ lr_scheduler_type: str = field(
61
+ default="constant",
62
+ metadata={"help": "Learning rate schedule. Constant a bit better than cosine, and has advantage for analysis"},
63
+ )
64
+ max_steps: int = field(default=1000, metadata={"help": "How many optimizer update steps to take"})
65
+ warmup_ratio: float = field(default=0.03, metadata={"help": "Fraction of steps to do a warmup for"})
66
+ save_steps: int = field(default=10, metadata={"help": "Save checkpoint every X updates steps."})
67
+ logging_steps: int = field(default=10, metadata={"help": "Log every X updates steps."})
68
+ output_dir: str = field(
69
+ default="./results",
70
+ metadata={"help": "The output directory where the model predictions and checkpoints will be written."},
71
+ )
72
+
73
+ parser = HfArgumentParser(ScriptArguments)
74
+ script_args = parser.parse_args_into_dataclasses()[0]
75
+
76
+
77
+ def formatting_func(example):
78
+ text = f"### USER: {example['data'][0]}\n### ASSISTANT: {example['data'][1]}"
79
+ return text
80
+
81
+ # Load the GG model - this is the local one, update it to the one on the Hub
82
+ model_id = "google/gemma-7b"
83
+
84
+ quantization_config = BitsAndBytesConfig(
85
+ load_in_4bit=True,
86
+ bnb_4bit_compute_dtype=torch.float16,
87
+ bnb_4bit_quant_type="nf4"
88
+ )
89
+
90
+ # Load model
91
+ model = AutoModelForCausalLM.from_pretrained(
92
+ model_id,
93
+ quantization_config=quantization_config,
94
+ torch_dtype=torch.float32,
95
+ attn_implementation="sdpa" if not script_args.use_flash_attention_2 else "flash_attention_2"
96
+ )
97
+
98
+ # Load tokenizer
99
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
100
+ tokenizer.pad_token_id = tokenizer.eos_token_id
101
+
102
+ lora_config = LoraConfig(
103
+ r=script_args.lora_r,
104
+ target_modules=["q_proj", "o_proj", "k_proj", "v_proj", "gate_proj", "up_proj", "down_proj"],
105
+ bias="none",
106
+ task_type="CAUSAL_LM",
107
+ lora_alpha=script_args.lora_alpha,
108
+ lora_dropout=script_args.lora_dropout
109
+ )
110
+
111
+ train_dataset = load_dataset(script_args.dataset_name, split="train[:5%]")
112
+
113
+ # TODO: make that configurable
114
+ YOUR_HF_USERNAME = xxx
115
+ output_dir = f"{YOUR_HF_USERNAME}/gemma-qlora-ultrachat"
116
+
117
+ training_arguments = TrainingArguments(
118
+ output_dir=output_dir,
119
+ per_device_train_batch_size=script_args.per_device_train_batch_size,
120
+ gradient_accumulation_steps=script_args.gradient_accumulation_steps,
121
+ optim=script_args.optim,
122
+ save_steps=script_args.save_steps,
123
+ logging_steps=script_args.logging_steps,
124
+ learning_rate=script_args.learning_rate,
125
+ max_grad_norm=script_args.max_grad_norm,
126
+ max_steps=script_args.max_steps,
127
+ warmup_ratio=script_args.warmup_ratio,
128
+ lr_scheduler_type=script_args.lr_scheduler_type,
129
+ gradient_checkpointing=script_args.gradient_checkpointing,
130
+ fp16=script_args.fp16,
131
+ bf16=script_args.bf16,
132
+ )
133
+
134
+ trainer = SFTTrainer(
135
+ model=model,
136
+ args=training_arguments,
137
+ train_dataset=train_dataset,
138
+ peft_config=lora_config,
139
+ packing=script_args.packing,
140
+ dataset_text_field="id",
141
+ tokenizer=tokenizer,
142
+ max_seq_length=script_args.max_seq_length,
143
+ formatting_func=formatting_func,
144
+ )
145
+
146
+ trainer.train()
examples/notebook_sft_peft.ipynb ADDED
@@ -0,0 +1,729 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "nbformat": 4,
3
+ "nbformat_minor": 0,
4
+ "metadata": {
5
+ "colab": {
6
+ "provenance": [],
7
+ "gpuType": "T4"
8
+ },
9
+ "kernelspec": {
10
+ "name": "python3",
11
+ "display_name": "Python 3"
12
+ },
13
+ "language_info": {
14
+ "name": "python"
15
+ },
16
+ "accelerator": "GPU",
17
+ "widgets": {
18
+ "application/vnd.jupyter.widget-state+json": {
19
+ "32e7669cd82042cbbb419e25db606c1d": {
20
+ "model_module": "@jupyter-widgets/controls",
21
+ "model_name": "HBoxModel",
22
+ "model_module_version": "1.5.0",
23
+ "state": {
24
+ "_dom_classes": [],
25
+ "_model_module": "@jupyter-widgets/controls",
26
+ "_model_module_version": "1.5.0",
27
+ "_model_name": "HBoxModel",
28
+ "_view_count": null,
29
+ "_view_module": "@jupyter-widgets/controls",
30
+ "_view_module_version": "1.5.0",
31
+ "_view_name": "HBoxView",
32
+ "box_style": "",
33
+ "children": [
34
+ "IPY_MODEL_b6698be32bf74c4087e129fab6e13fdd",
35
+ "IPY_MODEL_ff7333b35c1c472482df6550f6e43be2",
36
+ "IPY_MODEL_da4df56a1ba440dbb69087d0019cab1d"
37
+ ],
38
+ "layout": "IPY_MODEL_ad598693c58549e0a83a1328d77b8f83"
39
+ }
40
+ },
41
+ "b6698be32bf74c4087e129fab6e13fdd": {
42
+ "model_module": "@jupyter-widgets/controls",
43
+ "model_name": "HTMLModel",
44
+ "model_module_version": "1.5.0",
45
+ "state": {
46
+ "_dom_classes": [],
47
+ "_model_module": "@jupyter-widgets/controls",
48
+ "_model_module_version": "1.5.0",
49
+ "_model_name": "HTMLModel",
50
+ "_view_count": null,
51
+ "_view_module": "@jupyter-widgets/controls",
52
+ "_view_module_version": "1.5.0",
53
+ "_view_name": "HTMLView",
54
+ "description": "",
55
+ "description_tooltip": null,
56
+ "layout": "IPY_MODEL_de2f7a60851f4681877a4c8dccba29cc",
57
+ "placeholder": "​",
58
+ "style": "IPY_MODEL_02b296efbff143f4bfbb904cbc7b1109",
59
+ "value": "Loading checkpoint shards: 100%"
60
+ }
61
+ },
62
+ "ff7333b35c1c472482df6550f6e43be2": {
63
+ "model_module": "@jupyter-widgets/controls",
64
+ "model_name": "FloatProgressModel",
65
+ "model_module_version": "1.5.0",
66
+ "state": {
67
+ "_dom_classes": [],
68
+ "_model_module": "@jupyter-widgets/controls",
69
+ "_model_module_version": "1.5.0",
70
+ "_model_name": "FloatProgressModel",
71
+ "_view_count": null,
72
+ "_view_module": "@jupyter-widgets/controls",
73
+ "_view_module_version": "1.5.0",
74
+ "_view_name": "ProgressView",
75
+ "bar_style": "success",
76
+ "description": "",
77
+ "description_tooltip": null,
78
+ "layout": "IPY_MODEL_72ac83e43e2b4d4498070a5b701a5572",
79
+ "max": 3,
80
+ "min": 0,
81
+ "orientation": "horizontal",
82
+ "style": "IPY_MODEL_320fa615d4de4652ac34fc2518f7749e",
83
+ "value": 3
84
+ }
85
+ },
86
+ "da4df56a1ba440dbb69087d0019cab1d": {
87
+ "model_module": "@jupyter-widgets/controls",
88
+ "model_name": "HTMLModel",
89
+ "model_module_version": "1.5.0",
90
+ "state": {
91
+ "_dom_classes": [],
92
+ "_model_module": "@jupyter-widgets/controls",
93
+ "_model_module_version": "1.5.0",
94
+ "_model_name": "HTMLModel",
95
+ "_view_count": null,
96
+ "_view_module": "@jupyter-widgets/controls",
97
+ "_view_module_version": "1.5.0",
98
+ "_view_name": "HTMLView",
99
+ "description": "",
100
+ "description_tooltip": null,
101
+ "layout": "IPY_MODEL_75280ef205a245be92da268e0752dc71",
102
+ "placeholder": "​",
103
+ "style": "IPY_MODEL_3f33eabd6f7f46ef8138abe748d8fbb1",
104
+ "value": " 3/3 [01:06<00:00, 18.14s/it]"
105
+ }
106
+ },
107
+ "ad598693c58549e0a83a1328d77b8f83": {
108
+ "model_module": "@jupyter-widgets/base",
109
+ "model_name": "LayoutModel",
110
+ "model_module_version": "1.2.0",
111
+ "state": {
112
+ "_model_module": "@jupyter-widgets/base",
113
+ "_model_module_version": "1.2.0",
114
+ "_model_name": "LayoutModel",
115
+ "_view_count": null,
116
+ "_view_module": "@jupyter-widgets/base",
117
+ "_view_module_version": "1.2.0",
118
+ "_view_name": "LayoutView",
119
+ "align_content": null,
120
+ "align_items": null,
121
+ "align_self": null,
122
+ "border": null,
123
+ "bottom": null,
124
+ "display": null,
125
+ "flex": null,
126
+ "flex_flow": null,
127
+ "grid_area": null,
128
+ "grid_auto_columns": null,
129
+ "grid_auto_flow": null,
130
+ "grid_auto_rows": null,
131
+ "grid_column": null,
132
+ "grid_gap": null,
133
+ "grid_row": null,
134
+ "grid_template_areas": null,
135
+ "grid_template_columns": null,
136
+ "grid_template_rows": null,
137
+ "height": null,
138
+ "justify_content": null,
139
+ "justify_items": null,
140
+ "left": null,
141
+ "margin": null,
142
+ "max_height": null,
143
+ "max_width": null,
144
+ "min_height": null,
145
+ "min_width": null,
146
+ "object_fit": null,
147
+ "object_position": null,
148
+ "order": null,
149
+ "overflow": null,
150
+ "overflow_x": null,
151
+ "overflow_y": null,
152
+ "padding": null,
153
+ "right": null,
154
+ "top": null,
155
+ "visibility": null,
156
+ "width": null
157
+ }
158
+ },
159
+ "de2f7a60851f4681877a4c8dccba29cc": {
160
+ "model_module": "@jupyter-widgets/base",
161
+ "model_name": "LayoutModel",
162
+ "model_module_version": "1.2.0",
163
+ "state": {
164
+ "_model_module": "@jupyter-widgets/base",
165
+ "_model_module_version": "1.2.0",
166
+ "_model_name": "LayoutModel",
167
+ "_view_count": null,
168
+ "_view_module": "@jupyter-widgets/base",
169
+ "_view_module_version": "1.2.0",
170
+ "_view_name": "LayoutView",
171
+ "align_content": null,
172
+ "align_items": null,
173
+ "align_self": null,
174
+ "border": null,
175
+ "bottom": null,
176
+ "display": null,
177
+ "flex": null,
178
+ "flex_flow": null,
179
+ "grid_area": null,
180
+ "grid_auto_columns": null,
181
+ "grid_auto_flow": null,
182
+ "grid_auto_rows": null,
183
+ "grid_column": null,
184
+ "grid_gap": null,
185
+ "grid_row": null,
186
+ "grid_template_areas": null,
187
+ "grid_template_columns": null,
188
+ "grid_template_rows": null,
189
+ "height": null,
190
+ "justify_content": null,
191
+ "justify_items": null,
192
+ "left": null,
193
+ "margin": null,
194
+ "max_height": null,
195
+ "max_width": null,
196
+ "min_height": null,
197
+ "min_width": null,
198
+ "object_fit": null,
199
+ "object_position": null,
200
+ "order": null,
201
+ "overflow": null,
202
+ "overflow_x": null,
203
+ "overflow_y": null,
204
+ "padding": null,
205
+ "right": null,
206
+ "top": null,
207
+ "visibility": null,
208
+ "width": null
209
+ }
210
+ },
211
+ "02b296efbff143f4bfbb904cbc7b1109": {
212
+ "model_module": "@jupyter-widgets/controls",
213
+ "model_name": "DescriptionStyleModel",
214
+ "model_module_version": "1.5.0",
215
+ "state": {
216
+ "_model_module": "@jupyter-widgets/controls",
217
+ "_model_module_version": "1.5.0",
218
+ "_model_name": "DescriptionStyleModel",
219
+ "_view_count": null,
220
+ "_view_module": "@jupyter-widgets/base",
221
+ "_view_module_version": "1.2.0",
222
+ "_view_name": "StyleView",
223
+ "description_width": ""
224
+ }
225
+ },
226
+ "72ac83e43e2b4d4498070a5b701a5572": {
227
+ "model_module": "@jupyter-widgets/base",
228
+ "model_name": "LayoutModel",
229
+ "model_module_version": "1.2.0",
230
+ "state": {
231
+ "_model_module": "@jupyter-widgets/base",
232
+ "_model_module_version": "1.2.0",
233
+ "_model_name": "LayoutModel",
234
+ "_view_count": null,
235
+ "_view_module": "@jupyter-widgets/base",
236
+ "_view_module_version": "1.2.0",
237
+ "_view_name": "LayoutView",
238
+ "align_content": null,
239
+ "align_items": null,
240
+ "align_self": null,
241
+ "border": null,
242
+ "bottom": null,
243
+ "display": null,
244
+ "flex": null,
245
+ "flex_flow": null,
246
+ "grid_area": null,
247
+ "grid_auto_columns": null,
248
+ "grid_auto_flow": null,
249
+ "grid_auto_rows": null,
250
+ "grid_column": null,
251
+ "grid_gap": null,
252
+ "grid_row": null,
253
+ "grid_template_areas": null,
254
+ "grid_template_columns": null,
255
+ "grid_template_rows": null,
256
+ "height": null,
257
+ "justify_content": null,
258
+ "justify_items": null,
259
+ "left": null,
260
+ "margin": null,
261
+ "max_height": null,
262
+ "max_width": null,
263
+ "min_height": null,
264
+ "min_width": null,
265
+ "object_fit": null,
266
+ "object_position": null,
267
+ "order": null,
268
+ "overflow": null,
269
+ "overflow_x": null,
270
+ "overflow_y": null,
271
+ "padding": null,
272
+ "right": null,
273
+ "top": null,
274
+ "visibility": null,
275
+ "width": null
276
+ }
277
+ },
278
+ "320fa615d4de4652ac34fc2518f7749e": {
279
+ "model_module": "@jupyter-widgets/controls",
280
+ "model_name": "ProgressStyleModel",
281
+ "model_module_version": "1.5.0",
282
+ "state": {
283
+ "_model_module": "@jupyter-widgets/controls",
284
+ "_model_module_version": "1.5.0",
285
+ "_model_name": "ProgressStyleModel",
286
+ "_view_count": null,
287
+ "_view_module": "@jupyter-widgets/base",
288
+ "_view_module_version": "1.2.0",
289
+ "_view_name": "StyleView",
290
+ "bar_color": null,
291
+ "description_width": ""
292
+ }
293
+ },
294
+ "75280ef205a245be92da268e0752dc71": {
295
+ "model_module": "@jupyter-widgets/base",
296
+ "model_name": "LayoutModel",
297
+ "model_module_version": "1.2.0",
298
+ "state": {
299
+ "_model_module": "@jupyter-widgets/base",
300
+ "_model_module_version": "1.2.0",
301
+ "_model_name": "LayoutModel",
302
+ "_view_count": null,
303
+ "_view_module": "@jupyter-widgets/base",
304
+ "_view_module_version": "1.2.0",
305
+ "_view_name": "LayoutView",
306
+ "align_content": null,
307
+ "align_items": null,
308
+ "align_self": null,
309
+ "border": null,
310
+ "bottom": null,
311
+ "display": null,
312
+ "flex": null,
313
+ "flex_flow": null,
314
+ "grid_area": null,
315
+ "grid_auto_columns": null,
316
+ "grid_auto_flow": null,
317
+ "grid_auto_rows": null,
318
+ "grid_column": null,
319
+ "grid_gap": null,
320
+ "grid_row": null,
321
+ "grid_template_areas": null,
322
+ "grid_template_columns": null,
323
+ "grid_template_rows": null,
324
+ "height": null,
325
+ "justify_content": null,
326
+ "justify_items": null,
327
+ "left": null,
328
+ "margin": null,
329
+ "max_height": null,
330
+ "max_width": null,
331
+ "min_height": null,
332
+ "min_width": null,
333
+ "object_fit": null,
334
+ "object_position": null,
335
+ "order": null,
336
+ "overflow": null,
337
+ "overflow_x": null,
338
+ "overflow_y": null,
339
+ "padding": null,
340
+ "right": null,
341
+ "top": null,
342
+ "visibility": null,
343
+ "width": null
344
+ }
345
+ },
346
+ "3f33eabd6f7f46ef8138abe748d8fbb1": {
347
+ "model_module": "@jupyter-widgets/controls",
348
+ "model_name": "DescriptionStyleModel",
349
+ "model_module_version": "1.5.0",
350
+ "state": {
351
+ "_model_module": "@jupyter-widgets/controls",
352
+ "_model_module_version": "1.5.0",
353
+ "_model_name": "DescriptionStyleModel",
354
+ "_view_count": null,
355
+ "_view_module": "@jupyter-widgets/base",
356
+ "_view_module_version": "1.2.0",
357
+ "_view_name": "StyleView",
358
+ "description_width": ""
359
+ }
360
+ }
361
+ }
362
+ }
363
+ },
364
+ "cells": [
365
+ {
366
+ "cell_type": "code",
367
+ "execution_count": null,
368
+ "metadata": {
369
+ "id": "mi50mprVsU_P"
370
+ },
371
+ "outputs": [],
372
+ "source": [
373
+ "import os\n",
374
+ "from google.colab import userdata\n",
375
+ "os.environ[\"HF_TOKEN\"] = userdata.get('HF_TOKEN')"
376
+ ]
377
+ },
378
+ {
379
+ "cell_type": "code",
380
+ "source": [
381
+ "!pip3 install -q -U bitsandbytes==0.42.0\n",
382
+ "!pip3 install -q -U peft==0.8.2\n",
383
+ "!pip3 install -q -U trl==0.7.10\n",
384
+ "!pip3 install -q -U accelerate==0.27.1\n",
385
+ "!pip3 install -q -U datasets==2.17.0\n",
386
+ "!pip3 install -q -U transformers==4.38.0"
387
+ ],
388
+ "metadata": {
389
+ "colab": {
390
+ "base_uri": "https://localhost:8080/"
391
+ },
392
+ "id": "-5gJk3W_s0RY",
393
+ "outputId": "ca3d427e-5bfc-4635-f27a-e49e56718f7e"
394
+ },
395
+ "execution_count": null,
396
+ "outputs": [
397
+ {
398
+ "output_type": "stream",
399
+ "name": "stdout",
400
+ "text": [
401
+ "Collecting git+https://****@github.com/huggingface/new-model-addition-golden-gate@add-golden-gate\n",
402
+ " Cloning https://****@github.com/huggingface/new-model-addition-golden-gate (to revision add-golden-gate) to /tmp/pip-req-build-8jci0sy8\n",
403
+ " Running command git clone --filter=blob:none --quiet 'https://****@github.com/huggingface/new-model-addition-golden-gate' /tmp/pip-req-build-8jci0sy8\n",
404
+ " Running command git checkout -b add-golden-gate --track origin/add-golden-gate\n",
405
+ " Switched to a new branch 'add-golden-gate'\n",
406
+ " Branch 'add-golden-gate' set up to track remote branch 'add-golden-gate' from 'origin'.\n",
407
+ " Resolved https://****@github.com/huggingface/new-model-addition-golden-gate to commit e9d36beb5fcafeb2ac327a68eee82009d24cb58f\n",
408
+ " Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
409
+ " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
410
+ " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
411
+ "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from transformers==4.38.0.dev0) (3.13.1)\n",
412
+ "Requirement already satisfied: huggingface-hub<1.0,>=0.19.3 in /usr/local/lib/python3.10/dist-packages (from transformers==4.38.0.dev0) (0.20.3)\n",
413
+ "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from transformers==4.38.0.dev0) (1.25.2)\n",
414
+ "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from transformers==4.38.0.dev0) (23.2)\n",
415
+ "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from transformers==4.38.0.dev0) (6.0.1)\n",
416
+ "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers==4.38.0.dev0) (2023.12.25)\n",
417
+ "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from transformers==4.38.0.dev0) (2.31.0)\n",
418
+ "Requirement already satisfied: tokenizers<0.19,>=0.14 in /usr/local/lib/python3.10/dist-packages (from transformers==4.38.0.dev0) (0.15.2)\n",
419
+ "Requirement already satisfied: safetensors>=0.4.1 in /usr/local/lib/python3.10/dist-packages (from transformers==4.38.0.dev0) (0.4.2)\n",
420
+ "Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.10/dist-packages (from transformers==4.38.0.dev0) (4.66.2)\n",
421
+ "Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.19.3->transformers==4.38.0.dev0) (2023.6.0)\n",
422
+ "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.19.3->transformers==4.38.0.dev0) (4.9.0)\n",
423
+ "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->transformers==4.38.0.dev0) (3.3.2)\n",
424
+ "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->transformers==4.38.0.dev0) (3.6)\n",
425
+ "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->transformers==4.38.0.dev0) (2.0.7)\n",
426
+ "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->transformers==4.38.0.dev0) (2024.2.2)\n"
427
+ ]
428
+ }
429
+ ]
430
+ },
431
+ {
432
+ "cell_type": "code",
433
+ "source": [
434
+ "import torch\n",
435
+ "from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, GemmaTokenizer\n",
436
+ "\n",
437
+ "model_id = \"google/gemma-7b\"\n",
438
+ "bnb_config = BitsAndBytesConfig(\n",
439
+ " load_in_4bit=True,\n",
440
+ " bnb_4bit_quant_type=\"nf4\",\n",
441
+ " bnb_4bit_compute_dtype=torch.bfloat16\n",
442
+ ")\n",
443
+ "\n",
444
+ "tokenizer = AutoTokenizer.from_pretrained(model_id, token=os.environ['HF_TOKEN'])\n",
445
+ "model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config, device_map={\"\":0}, token=os.environ['HF_TOKEN'])"
446
+ ],
447
+ "metadata": {
448
+ "colab": {
449
+ "base_uri": "https://localhost:8080/",
450
+ "height": 49,
451
+ "referenced_widgets": [
452
+ "32e7669cd82042cbbb419e25db606c1d",
453
+ "b6698be32bf74c4087e129fab6e13fdd",
454
+ "ff7333b35c1c472482df6550f6e43be2",
455
+ "da4df56a1ba440dbb69087d0019cab1d",
456
+ "ad598693c58549e0a83a1328d77b8f83",
457
+ "de2f7a60851f4681877a4c8dccba29cc",
458
+ "02b296efbff143f4bfbb904cbc7b1109",
459
+ "72ac83e43e2b4d4498070a5b701a5572",
460
+ "320fa615d4de4652ac34fc2518f7749e",
461
+ "75280ef205a245be92da268e0752dc71",
462
+ "3f33eabd6f7f46ef8138abe748d8fbb1"
463
+ ]
464
+ },
465
+ "id": "EVEotZX8s-v6",
466
+ "outputId": "e378234f-f56f-483e-c569-f3a196c02370"
467
+ },
468
+ "execution_count": null,
469
+ "outputs": [
470
+ {
471
+ "output_type": "display_data",
472
+ "data": {
473
+ "text/plain": [
474
+ "Loading checkpoint shards: 0%| | 0/3 [00:00<?, ?it/s]"
475
+ ],
476
+ "application/vnd.jupyter.widget-view+json": {
477
+ "version_major": 2,
478
+ "version_minor": 0,
479
+ "model_id": "32e7669cd82042cbbb419e25db606c1d"
480
+ }
481
+ },
482
+ "metadata": {}
483
+ }
484
+ ]
485
+ },
486
+ {
487
+ "cell_type": "code",
488
+ "source": [
489
+ "text = \"Quote: Imagination is more\"\n",
490
+ "device = \"cuda:0\"\n",
491
+ "inputs = tokenizer(text, return_tensors=\"pt\").to(device)\n",
492
+ "\n",
493
+ "outputs = model.generate(**inputs, max_new_tokens=20)\n",
494
+ "print(tokenizer.decode(outputs[0], skip_special_tokens=True))"
495
+ ],
496
+ "metadata": {
497
+ "colab": {
498
+ "base_uri": "https://localhost:8080/"
499
+ },
500
+ "id": "7Msk610TVUGW",
501
+ "outputId": "8c14afe0-dc6e-42b1-d05a-1a7a6c2ace9e"
502
+ },
503
+ "execution_count": null,
504
+ "outputs": [
505
+ {
506
+ "output_type": "stream",
507
+ "name": "stdout",
508
+ "text": [
509
+ "Quote: Imagination is more important than knowledge. Knowledge is limited. Imagination encircles the world.\n",
510
+ "\n",
511
+ "-Albert Einstein\n",
512
+ "\n",
513
+ "I\n"
514
+ ]
515
+ }
516
+ ]
517
+ },
518
+ {
519
+ "cell_type": "code",
520
+ "source": [
521
+ "os.environ[\"WANDB_DISABLED\"] = \"true\""
522
+ ],
523
+ "metadata": {
524
+ "id": "Mi2P12KsVbyt"
525
+ },
526
+ "execution_count": null,
527
+ "outputs": []
528
+ },
529
+ {
530
+ "cell_type": "code",
531
+ "source": [
532
+ "from peft import LoraConfig\n",
533
+ "\n",
534
+ "lora_config = LoraConfig(\n",
535
+ " r=8,\n",
536
+ " target_modules=[\"q_proj\", \"o_proj\", \"k_proj\", \"v_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"],\n",
537
+ " task_type=\"CAUSAL_LM\",\n",
538
+ ")"
539
+ ],
540
+ "metadata": {
541
+ "id": "7lzjoG3KVRMN"
542
+ },
543
+ "execution_count": null,
544
+ "outputs": []
545
+ },
546
+ {
547
+ "cell_type": "code",
548
+ "source": [
549
+ "from datasets import load_dataset\n",
550
+ "\n",
551
+ "data = load_dataset(\"Abirate/english_quotes\")\n",
552
+ "data = data.map(lambda samples: tokenizer(samples[\"quote\"]), batched=True)"
553
+ ],
554
+ "metadata": {
555
+ "id": "HPQSpLNAuubn"
556
+ },
557
+ "execution_count": null,
558
+ "outputs": []
559
+ },
560
+ {
561
+ "cell_type": "code",
562
+ "source": [
563
+ "import transformers\n",
564
+ "from trl import SFTTrainer\n",
565
+ "\n",
566
+ "def formatting_func(example):\n",
567
+ " text = f\"Quote: {example['quote'][0]}\\nAuthor: {example['author'][0]}\"\n",
568
+ " return [text]\n",
569
+ "\n",
570
+ "trainer = SFTTrainer(\n",
571
+ " model=model,\n",
572
+ " train_dataset=data[\"train\"],\n",
573
+ " args=transformers.TrainingArguments(\n",
574
+ " per_device_train_batch_size=1,\n",
575
+ " gradient_accumulation_steps=4,\n",
576
+ " warmup_steps=2,\n",
577
+ " max_steps=10,\n",
578
+ " learning_rate=2e-4,\n",
579
+ " fp16=True,\n",
580
+ " logging_steps=1,\n",
581
+ " output_dir=\"outputs\",\n",
582
+ " optim=\"paged_adamw_8bit\"\n",
583
+ " ),\n",
584
+ " peft_config=lora_config,\n",
585
+ " formatting_func=formatting_func,\n",
586
+ ")\n",
587
+ "trainer.train()"
588
+ ],
589
+ "metadata": {
590
+ "colab": {
591
+ "base_uri": "https://localhost:8080/",
592
+ "height": 530
593
+ },
594
+ "id": "HFbR2FIgVfiT",
595
+ "outputId": "ba27fbda-54be-415c-ee47-78632e4ad4c6"
596
+ },
597
+ "execution_count": null,
598
+ "outputs": [
599
+ {
600
+ "output_type": "stream",
601
+ "name": "stderr",
602
+ "text": [
603
+ "Using the `WANDB_DISABLED` environment variable is deprecated and will be removed in v5. Use the --report_to flag to control the integrations used for logging result (for instance --report_to none).\n",
604
+ "/usr/local/lib/python3.10/dist-packages/trl/trainer/sft_trainer.py:223: UserWarning: You didn't pass a `max_seq_length` argument to the SFTTrainer, this will default to 1024\n",
605
+ " warnings.warn(\n",
606
+ "/usr/local/lib/python3.10/dist-packages/trl/trainer/sft_trainer.py:290: UserWarning: You passed a tokenizer with `padding_side` not equal to `right` to the SFTTrainer. This might lead to some unexpected behaviour due to overflow issues when training a model in half-precision. You might consider adding `tokenizer.padding_side = 'right'` to your code.\n",
607
+ " warnings.warn(\n"
608
+ ]
609
+ },
610
+ {
611
+ "output_type": "display_data",
612
+ "data": {
613
+ "text/plain": [
614
+ "<IPython.core.display.HTML object>"
615
+ ],
616
+ "text/html": [
617
+ "\n",
618
+ " <div>\n",
619
+ " \n",
620
+ " <progress value='10' max='10' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
621
+ " [10/10 00:08, Epoch 6/10]\n",
622
+ " </div>\n",
623
+ " <table border=\"1\" class=\"dataframe\">\n",
624
+ " <thead>\n",
625
+ " <tr style=\"text-align: left;\">\n",
626
+ " <th>Step</th>\n",
627
+ " <th>Training Loss</th>\n",
628
+ " </tr>\n",
629
+ " </thead>\n",
630
+ " <tbody>\n",
631
+ " <tr>\n",
632
+ " <td>1</td>\n",
633
+ " <td>1.700500</td>\n",
634
+ " </tr>\n",
635
+ " <tr>\n",
636
+ " <td>2</td>\n",
637
+ " <td>0.641000</td>\n",
638
+ " </tr>\n",
639
+ " <tr>\n",
640
+ " <td>3</td>\n",
641
+ " <td>1.031500</td>\n",
642
+ " </tr>\n",
643
+ " <tr>\n",
644
+ " <td>4</td>\n",
645
+ " <td>0.945800</td>\n",
646
+ " </tr>\n",
647
+ " <tr>\n",
648
+ " <td>5</td>\n",
649
+ " <td>0.516200</td>\n",
650
+ " </tr>\n",
651
+ " <tr>\n",
652
+ " <td>6</td>\n",
653
+ " <td>1.278600</td>\n",
654
+ " </tr>\n",
655
+ " <tr>\n",
656
+ " <td>7</td>\n",
657
+ " <td>1.187300</td>\n",
658
+ " </tr>\n",
659
+ " <tr>\n",
660
+ " <td>8</td>\n",
661
+ " <td>0.339000</td>\n",
662
+ " </tr>\n",
663
+ " <tr>\n",
664
+ " <td>9</td>\n",
665
+ " <td>0.724500</td>\n",
666
+ " </tr>\n",
667
+ " <tr>\n",
668
+ " <td>10</td>\n",
669
+ " <td>0.647600</td>\n",
670
+ " </tr>\n",
671
+ " </tbody>\n",
672
+ "</table><p>"
673
+ ]
674
+ },
675
+ "metadata": {}
676
+ },
677
+ {
678
+ "output_type": "execute_result",
679
+ "data": {
680
+ "text/plain": [
681
+ "TrainOutput(global_step=10, training_loss=0.9011982649564743, metrics={'train_runtime': 10.2202, 'train_samples_per_second': 3.914, 'train_steps_per_second': 0.978, 'total_flos': 5520965345280.0, 'train_loss': 0.9011982649564743, 'epoch': 6.67})"
682
+ ]
683
+ },
684
+ "metadata": {},
685
+ "execution_count": 8
686
+ }
687
+ ]
688
+ },
689
+ {
690
+ "cell_type": "code",
691
+ "source": [
692
+ "text = \"Quote: Imagination is\"\n",
693
+ "device = \"cuda:0\"\n",
694
+ "inputs = tokenizer(text, return_tensors=\"pt\").to(device)\n",
695
+ "\n",
696
+ "outputs = model.generate(**inputs, max_new_tokens=20)\n",
697
+ "print(tokenizer.decode(outputs[0], skip_special_tokens=True))"
698
+ ],
699
+ "metadata": {
700
+ "colab": {
701
+ "base_uri": "https://localhost:8080/"
702
+ },
703
+ "id": "f5Mim0lNViwe",
704
+ "outputId": "4534ee26-63e3-4ced-ee27-673f0b9d7afb"
705
+ },
706
+ "execution_count": null,
707
+ "outputs": [
708
+ {
709
+ "output_type": "stream",
710
+ "name": "stdout",
711
+ "text": [
712
+ "Quote: Imagination is more important than knowledge. Knowledge is limited. Imagination encircles the world.\n",
713
+ "\n",
714
+ "Author: Albert Einstein\n"
715
+ ]
716
+ }
717
+ ]
718
+ },
719
+ {
720
+ "cell_type": "code",
721
+ "source": [],
722
+ "metadata": {
723
+ "id": "djg3QAMuVx8R"
724
+ },
725
+ "execution_count": null,
726
+ "outputs": []
727
+ }
728
+ ]
729
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 2,
4
+ "eos_token_id": 1,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.38.0.dev0"
7
+ }
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:632edaf7993dd73b33287cc34e0de0ed48c04a54834198fac5f2f78ff47e62c9
3
+ size 4995496656
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9b0278bd4e203c50d4a1b2a29bd6061b19c48abc77f338a4de2f0dd4fba0fac
3
+ size 4982953168
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69dcacd38561f42064c81a0d8ebfd97d8a393d22e40fea327fc6c9a14205768c
3
+ size 4982953200
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ddee49e12c7ec4ffb8ff6359a727a798ded9d6176da4bad30833f24426cb92f
3
+ size 2113988336
model.safetensors.index.json ADDED
@@ -0,0 +1,261 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 17075361792
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
7
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
26
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
27
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
28
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
29
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
30
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
31
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
32
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00004.safetensors",
71
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
72
+ "model.layers.15.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
73
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
74
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
75
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00004.safetensors",
80
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
81
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
82
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
83
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
84
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
85
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
86
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
87
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
88
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
89
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
90
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
91
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
92
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
93
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
94
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
95
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
96
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
97
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
98
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
99
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
100
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
101
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
102
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
103
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
104
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
105
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
106
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
107
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
108
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
109
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
110
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
111
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
112
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
113
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
114
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
115
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
116
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
117
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
118
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
119
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
120
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
121
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
122
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
123
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
124
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
125
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
126
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
127
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
128
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
131
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
132
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
134
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
135
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
137
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
139
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
146
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
149
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
151
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
153
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
154
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
155
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
156
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
157
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
158
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
159
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
160
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00004.safetensors",
161
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
162
+ "model.layers.24.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
163
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
164
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
165
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00004.safetensors",
170
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
171
+ "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
172
+ "model.layers.25.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
173
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
174
+ "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
175
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
176
+ "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
177
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
178
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00004.safetensors",
179
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
180
+ "model.layers.26.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
181
+ "model.layers.26.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
182
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
183
+ "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
184
+ "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
185
+ "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
186
+ "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
187
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00004.safetensors",
188
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
189
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
190
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
191
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
192
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
193
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
194
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
195
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
196
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
197
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
198
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
199
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
200
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
201
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
202
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
203
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
204
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
205
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
206
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
207
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
208
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
209
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
210
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
211
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
212
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
213
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
214
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
215
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
216
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
217
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
218
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
219
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
220
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
221
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
222
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
223
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00004.safetensors",
224
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
225
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
226
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
227
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
228
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
229
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
230
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
231
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
232
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
233
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
234
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
235
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
236
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
237
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
238
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
239
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
240
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
241
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
242
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
243
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
244
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
245
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
246
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
247
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
248
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
249
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
250
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
251
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
252
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
253
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
254
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
255
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
256
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
257
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
258
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
259
+ "model.norm.weight": "model-00004-of-00004.safetensors"
260
+ }
261
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<bos>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<eos>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<pad>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0d908b4f9326e0998815690e325b6abbd378978553e10627924dd825db7e243
3
+ size 17477553
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6969e64047744a44bb3abfb5c50f8de0f7ed8b571d5444426ef931f651d1a0ef
3
+ size 4241111
tokenizer_config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<pad>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<eos>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "<bos>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "3": {
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ }
37
+ },
38
+ "bos_token": "<bos>",
39
+ "clean_up_tokenization_spaces": false,
40
+ "eos_token": "<eos>",
41
+ "legacy": null,
42
+ "model_max_length": 1000000000000000019884624838656,
43
+ "pad_token": "<pad>",
44
+ "sp_model_kwargs": {},
45
+ "spaces_between_special_tokens": false,
46
+ "tokenizer_class": "GemmaTokenizer",
47
+ "unk_token": "<unk>",
48
+ "use_default_system_prompt": false
49
+ }