File size: 6,887 Bytes
41d030c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8c3284
41d030c
d8c3284
41d030c
 
 
 
 
 
d8c3284
 
41d030c
 
 
 
 
d8c3284
 
 
 
41d030c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2b1fe1
41d030c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8c3284
 
41d030c
 
 
 
 
 
d8c3284
 
41d030c
d8c3284
41d030c
 
 
 
 
d8c3284
 
a2b1fe1
41d030c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8c3284
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
---
language:
- ar
pipeline_tag: text-generation
---
# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->


## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->



- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [Arabic]
- **License:** [More Information Needed]
- **Finetuned from model :** [https://huggingface.co/aubmindlab/aragpt2-mega]



## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
1. The model can be helpful for the arabic langauge students/researchers, since it provide the full sentence anaylsis (اعراب الجملة ) in arabic language.
2. 


### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
1. This model can't be use for grammar check, since it dail with high level of arabic correct sentence as input
2. Don't use arabic dailects in input sentence.
3. 
4. 

[More Information Needed]

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

[More Information Needed]

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

## How to Get Started with the Model

```python
from transformers import GPT2Tokenizer 
from arabert.preprocess import ArabertPreprocessor
from arabert.aragpt2.grover.modeling_gpt2 import GPT2LMHeadModel
from pyarabic.araby import strip_tashkeel
import pyarabic.trans
model_name='alsubari/aragpt2-mega-pos-msa'


tokenizer = GPT2Tokenizer.from_pretrained('alsubari/aragpt2-mega-pos-msa')
model = GPT2LMHeadModel.from_pretrained('alsubari/aragpt2-mega-pos-msa').to("cuda")

arabert_prep = ArabertPreprocessor(model_name='aubmindlab/aragpt2-mega')
prml=['اعراب الجملة :', ' صنف الكلمات من الجملة :']
text='تعلَّمْ من أخطائِكَ'
text=arabert_prep.preprocess(strip_tashkeel(text))
generation_args = {
    'pad_token_id':tokenizer.eos_token_id,
    'max_length': 256,
    'num_beams':20,
    'no_repeat_ngram_size': 3,    
    'top_k': 20,  
    'top_p': 0.1,  # Consider all tokens with non-zero probability
    'do_sample': True,
    'repetition_penalty':2.0
}

##Pose Tagging
input_text = f'<|startoftext|>Instruction: {prml[1]} {text}<|pad|>Answer:'
input_ids = tokenizer.encode(input_text, return_tensors='pt').to("cuda")
output_ids = model.generate(input_ids=input_ids,**generation_args)
output_text = tokenizer.decode(output_ids[0],skip_special_tokens=True).split('Answer:')[1]
answer_pose=pyarabic.trans.delimite_language(output_text, start="<token>", end="</token>")

print(answer_pose)
# <token>تعلم : تعلم</token>  : Verb  <token>من : من</token>  : Relative pronoun  <token>أخطائك : اخطا</token>  : Noun  <token>ك</token>  : Personal pronunction

##Arabic Sentence Analysis
input_text = f'<|startoftext|>Instruction: {prml[0]} {text}<|pad|>Answer:'
input_ids = tokenizer.encode(input_text, return_tensors='pt').to("cuda")
output_ids = model.generate(input_ids=input_ids,**generation_args)
output_text = tokenizer.decode(output_ids[0],skip_special_tokens=True).split('Answer:')[1]

print(output_text)
#تعلم : تعلم : فعل ، مفرد المخاطب للمذكر ، فعل مضارع ، مرفوع من : من : حرف جر أخطائك : اخطا : اسم ، جمع المذكر ، مجرور ك : ضمير ، مفرد المتكلم
```

## Training Details

### Training Data

<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

[More Information Needed]

### Training Procedure 

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

#### Preprocessing [optional]

[More Information Needed]


#### Training Hyperparameters

- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->

#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

[More Information Needed]

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Data Card if possible. -->

[More Information Needed]

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[More Information Needed]

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

[More Information Needed]

### Results

[More Information Needed]

#### Summary



## Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->

[More Information Needed]

## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]

## Technical Specifications [optional]

### Model Architecture and Objective

[More Information Needed]

### Compute Infrastructure

[More Information Needed]

#### Hardware

[More Information Needed]

#### Software

[More Information Needed]

## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

[More Information Needed]

## More Information [optional]

[More Information Needed]

## Model Card Authors [optional]

[More Information Needed]

## Model Card Contact

[[email protected]]